Advertisement

STM32和FPGA之间通过16位SPI通信。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用16位SPI协议,STM32芯片与FPGA之间实现了数据通信。具体而言,该通信采用的微控制器是STM32F103ZET6,并伴随着Verilog语言的硬件描述。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于STM32FPGA16SPI
    优质
    本项目基于STM32微控制器与FPGA实现高效16位SPI通信,探讨了硬件设计、接口配置及数据传输优化技术,适用于高速数据处理场景。 STM32与FPGA通信采用的是16位SPI协议。使用的微控制器是STM32F103ZET6,编程语言为Verilog。
  • STM32FPGASPI.zip
    优质
    本资源包含STM32与FPGA之间通过SPI接口进行数据传输的详细设计文档及代码示例,适合硬件开发人员参考学习。 FPGA作为从机与STM32主机通信的功能已经实现。目前功能仅实例化了FPGA向STM32发送数据,并且该功能可以保证正常运行。所用的FPGA型号为Cyclone IV,采用Verilog语言编写逻辑代码,具有通用性。此外,已有库文件可用于STM32向FPGA发送数据的操作,但由于实际应用中未使用到这部分功能,因此没有进行实例化。详细信息请参阅readme文档。
  • STM32SPI与NRF905
    优质
    本项目介绍如何利用STM32微控制器通过SPI接口与NRF905无线收发模块进行通信,涵盖硬件连接及软件配置。 STM32 SPI方式收发NRF905是嵌入式系统实现无线通信的一种典型应用。STM32是一款基于ARM Cortex-M内核的微控制器,在各种电子设备中有广泛应用;而NRF905则是一种低功耗、长距离的无线收发器,适用于物联网、遥控和传感器网络等场景。 SPI(Serial Peripheral Interface)是用于STM32与NRF905之间数据传输的主要通信协议。它是一个全双工同步串行接口,包括主机(Master)和从机(Slave),通过四根信号线:时钟(SCLK)、主输出从输入(MOSI)、主输入从输出(MISO)以及芯片选择(CS),来进行数据交换。 在使用STM32与NRF905进行SPI通信时,需要完成以下主要步骤: 1. 初始化STM32的SPI接口。这包括将GPIO引脚配置为SPI功能,并设置相应的分频因子、主设备模式及传输方向等参数。 2. 配置NRF905:通过向其寄存器写入特定值来设定频率范围内的频道选择以及工作模式,如发射功率和接收发送数据格式。 3. 实现数据的收发操作。具体而言就是编写代码以启动SPI通信并传输或读取所需的数据信息,在接收时还需要设置中断处理机制以便及时响应新接收到的信息。 4. 错误检测与恢复:定期检查NRF905的状态寄存器,识别可能发生的错误(如CRC校验失败、帧格式不匹配等),并采取相应措施加以解决。 5. 通信结束后关闭SPI接口以释放资源。 “King_NRF905”项目中提供了使用STM32 SPI控制NRF905进行无线数据传输的实现代码,有助于理解如何在实际应用中配置此类硬件组合,并根据自身需求进一步优化或定制相关功能。 综上所述,掌握基于SPI通信协议、熟悉NRF905特性和工作原理以及具体编程技术对开发可靠的嵌入式无线系统至关重要。
  • FPGAPC的USB
    优质
    本文探讨了如何通过USB接口实现FPGA与个人电脑间的高效数据交换,详细介绍硬件连接及软件配置方法。 FPGA与PC的USB通信实现包括上位机程序、下位机程序编写以及下位机硬件的构建。
  • DSPFPGAEMIF代码
    优质
    本项目专注于开发和优化DSP与FPGA之间的EMIF接口通信代码,旨在提升数据传输效率及系统性能,适用于高性能计算领域。 FPGA与DSP通信的EMIF协议相关的Verilog代码已经测试成功,并可以根据个人需求进行适当修改使用。
  • SPI代码(FPGASTM32).zip
    优质
    本资源包含FPGA与STM32通过SPI接口进行通信的详细代码示例。适用于嵌入式系统开发人员和硬件工程师学习和参考。 SPI_FPGA.c是用于STM32的程序文件,包含配置DMA接收SPI数据的相关代码和DMA中断服务函数。.v 文件则是FPGA项目的Verilog代码,其中包括了SPI模块的实现以及顶层应用文件的内容。
  • ARMSPI协议与FPGA从设备
    优质
    本项目探讨了如何利用ARM处理器经由SPI(串行外设接口)协议实现与其连接的FPGA从设备的数据交换和控制。 SPI (Serial Peripheral Interface) 是一种常见的串行通信协议,在微控制器如 ARM 和 FPGA 之间的数据传输中广泛使用。本段落将深入探讨通过 SPI 协议实现 ARM 与 FPGA 的通信,包括管脚分配、依赖性、中断处理以及 SPI 寄存器配置。 1. SPI 背景知识 SPI 是一个同步串行接口,由主机(Master)控制数据传输速率和时序,从机(Slave)按照主机的指令进行数据发送或接收。通常包含四个信号线:MISO(主机输入从机输出)、MOSI(主机输出从机输入)、SCK(时钟)和 SS(片选信号),在某些配置中可能还包括额外的 CS(芯片选择)信号。 2. ARM 的 SPI 功能设计 ARM 设备中的 SPI 功能通常集成在片上系统 (SoC) 中,允许与外部设备如 FPGA 建立通信。以下是关键的设计方面: ### 2.1 管脚分配 实现 SPI 通信时,需要正确地将 ARM 的 SPI 端口连接到相应的 IO 引脚。例如,MISO、MOSI、SCK 和 SS 需要与 FPGA 上的相应 SPI 接口相连。 ### 2.2 其他组件依赖性 #### 2.2.1 IO 线路配置 确保 IO 线路正确设置以适应 FPGA 的接口需求,包括电平转换和驱动能力。 #### 2.2.2 能量管理 SPI 通信可能受 ARM 内部电源管理策略影响,如低功耗模式或时钟门控。需要在 SPI 操作期间保持供电与时钟激活状态。 #### 2.2.3 中断处理 中断机制有助于提高系统效率,在传输完成或出现错误时通过中断通知处理器进行后续操作。 ### 2.3 SPI 寄存器详解 SPI 控制寄存器 (SPI_CR)、模式寄存器 (SPI_MR)、数据传输寄存器 (SPI_TDR)、片选寄存器 (SPI_CSR0) 和外围时钟使能寄存器(PMC_PCER)用于配置和控制 SPI 模块。 #### 2.3.1 SPI Control Register 该寄存器用于启动或停止 SPI 通信,设置传输模式,并处理其他相关功能。 #### 2.3.2 Mode Register (SPI_MR) 通过此寄存器设定工作模式(主/从)、数据宽度、时钟极性和相位等参数。 #### 2.3.3 Transmit Data Register 该寄存器用于写入待发送的数据,在传输完成后自动清空。 #### 2.3.4 Chip Select Register (SPI_CSR0) 此注册配置特定从机的片选信号,包括延迟时间和数据校验设置。 #### 2.3.5 Peripheral Clock Enable Register(PMC_PCER) 该寄存器用于启用或禁用 SPI 模块时钟,在操作前确保 SPI 接口已激活。 ### 2.4 SPI 寄存器配置 #### 管脚复用 在系统级的配置寄存器中设定 ARM 的 GPIO 管脚为 SPI 功能。 #### 启动 SPI 通过设置适当的标志来启动 SPI 模块中的相关寄存器启用接口功能。 #### 时钟速度和相位匹配 根据 FPGA 接口需求,使用模式寄存器调整 SPI 时钟的速率和相位配置。 调试过程中需注意信号同步、数据完整性、时钟速度一致性和片选管理。通过精确地设定这些参数可以有效地建立 ARM 和 FPGA 的SPI通信链路,并实现高效的双向数据传输。
  • FPGASPI_new.zip_SPI FPGA_fpga spi_spi verilog_vivado
    优质
    本资源包包含针对FPGA的SPI通信设计案例,采用Verilog语言编写,并适用于Vivado开发环境。适合学习和研究FPGA与外设通过SPI接口进行数据交换的技术细节。 通过FPGA实现SPI通信,由于SPI通信所需总线少且在模块之间易于连接,因此被广泛应用于数据通信领域。为了使FPGA能够与从机进行通信,通常使用Verilog语言编写相关代码。
  • FPGASTM32FSMC的深入了解
    优质
    本项目深入探讨了FPGA与STM32通过FSMC接口实现高效数据传输的技术细节和应用实践。 该文档可以深入理解FPGA核与STM32之间的FSMC并行通信方式。
  • ADXL325与STM32SPI的验证代码
    优质
    本项目提供了一段用于ADXL325加速度传感器与STM32微控制器之间通过SPI接口进行通讯的验证代码。此代码有助于开发人员快速测试和调试硬件连接及数据传输功能,确保传感器能准确地向微控制器发送加速度测量值。 ADXL345 3轴加速度传感器与STM32 SPI代码已亲测可用,有问题可在下方评论区留言。