
碳化硅的氮离子注入模拟研究
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本研究通过计算机模拟技术探讨了氮离子注入对碳化硅材料性能的影响,分析其微观结构变化及优化工艺参数的可能性。
氮离子注入是碳化硅(SiC)材料的一种常见掺杂技术,用于改变其电学特性以满足微电子学与固体电子学领域的需求,尤其是在高性能半导体器件的制备中发挥重要作用。李卓、夏晓川和梁红伟的研究团队利用SRIM软件对氮离子在SiC中的分布进行了模拟研究。
氮离子注入涉及将氮离子加速至特定能量并注入到SiC材料内。影响这一过程的关键因素包括注入角度、能量及剂量等条件。研究表明,随着注入角度的增加,氮离子的峰值浓度会向界面处移动,并且其峰值也会相应减小;同时,在一定的范围内,氮离子的注入深度和浓度与注入的能量和剂量呈近似线性关系。
为了实现更均匀的氮离子分布,研究者利用SRIM软件模拟了不同次数及具体条件下的多次注入。最终结果表明,采用多步骤注入结合最后一次较大角度注射的方法可以在SiC材料中获得较为一致且广泛的氮离子浓度分布区域(约500nm)。
SRIM是一款基于蒙特卡罗算法的离子注入模拟工具,它利用量子统计方法来计算入射离子在靶材中的轨迹及输运过程。该软件的主要模块包括SR和TRIM两个部分:前者用于快速获取有关入射离子的信息;后者则提供更详细的关于材料内氮离子浓度分布以及损伤情况的数据。
在SiC器件制造过程中,掺杂是控制特定区域电学性能的关键步骤之一。由于碳化硅的高温稳定性特性,通过常规热扩散实现高浓度掺杂较为困难,因此采用不受固有浓度限制且具有灵活选择区域特点的离子注入技术成为主流方案。
此次研究中,作者李卓专注于SiC基X射线探测器的研究;而夏晓川副教授则主要关注宽禁带半导体核辐射探测器领域,并担任硕士生导师。通过本次利用SRIM软件进行氮离子注入对SiC材料特性影响的深入探讨以及优化参数设置以达成理想掺杂效果,这项研究对于提升碳化硅半导体材料中的掺杂技术水平具有重要的理论与实际意义。
此外,在研发过程中,借助此类模拟技术可以预测并调整实验条件而无需开展物理试验,从而有助于降低开发成本及时间。
全部评论 (0)


