Advertisement

边做边学的深度强化学习:使用 PyTorch 设计倒立摆 DQN 实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目通过实践探索深度强化学习的核心概念,利用PyTorch框架实现经典的DQN算法来控制倒立摆问题,促进理论与实践的深度融合。 边做边学深度强化学习:PyTorch程序设计实践中的倒立摆DQN实现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 使 PyTorch DQN
    优质
    本项目通过实践探索深度强化学习的核心概念,利用PyTorch框架实现经典的DQN算法来控制倒立摆问题,促进理论与实践的深度融合。 边做边学深度强化学习:PyTorch程序设计实践中的倒立摆DQN实现。
  • :基于PyTorchQ-Learning与
    优质
    本书深入浅出地介绍了使用PyTorch框架进行深度强化学习的方法,通过Q-Learning算法和经典的倒立摆问题实例,引导读者在实践中掌握相关技术。 边做边学深度强化学习:使用PyTorch进行Q-Learning的实践,以倒立摆为例。
  • :迷宫Sarsa与PyTorch程序
    优质
    本书通过构建和优化迷宫环境下的Sarsa算法模型,教授读者如何使用Python编程语言及PyTorch框架进行深度强化学习的实际操作。 边做边学深度强化学习:PyTorch程序设计实践 迷宫 Sarsa
  • :在迷宫中运PyTorch进行Q-Learning编程练
    优质
    本教程介绍如何使用PyTorch实现Q-Learning算法解决迷宫问题,通过实践帮助读者掌握深度强化学习的基础知识和技巧。 边做边学深度强化学习:PyTorch程序设计实践 迷宫 Q-Learning
  • DQN——
    优质
    DQN是一种基于深度学习的强化学习算法,通过使用神经网络作为Q函数的参数化表示,有效解决了连续状态空间下的决策问题,在 Atari 游戏等多个领域取得了突破性成果。 本段落介绍了一种将深度学习与强化学习相结合的方法,旨在实现从感知到动作的端对端学习的新算法。在传统的Q-learning方法中,当状态和动作空间是离散且维度较低时,可以使用Q-Table来存储每个状态行动对的Q值;然而,在处理高维连续的状态和动作空间时,使用Q-Table变得不切实际。通常的做法是将更新Q-Table的问题转化为其他形式解决。
  • DQN——
    优质
    DQN(Deep Q-Network)是深度强化学习中的重要算法,它结合了深度神经网络与Q学习,能够有效解决复杂环境下的决策问题。 本段落介绍了一种结合深度学习与强化学习的方法,用于实现从感知到动作的端对端学习的新算法。在传统的Q-learning方法中,当状态和行动空间为离散且维度不高时,可以使用Q-Table来存储每个状态-行为组合的Q值;然而,在面对高维连续的状态或行动空间时,使用Q-Table变得不再实际可行。 通常的做法是将更新Q表的问题转化为一个函数逼近问题。这种方法可以通过调整参数θ使预测得到的Q函数尽可能接近最优解。深度神经网络能够自动提取复杂的特征表示,因此在处理状态和动作维度较高的情况下,采用深度学习方法来近似Q值显得尤为合适。这种结合了深度学习与强化学习的方法被称为DRL(Deep Reinforcement Learning)。
  • 基于DQNCartPole-v0验(使Pytorch
    优质
    本研究利用Pytorch平台,采用深度强化学习及DQN算法对经典控制问题CartPole-v0进行仿真实验,探索最优策略以实现杆平衡状态。 基于Pytorch实现的DQN算法应用于CartPole-v0环境之中。该程序完整复现了DQN算法,并且调整了一些参数以确保可以直接运行。DQN是传统强化学习中的Q-Learning的一种深度学习版本,其改进主要体现在三个方面:首先,它使用神经网络来逼近行为值函数;其次,通过维护一个回放缓冲区(replay buffer),每次从环境中采样得到的四元组数据被存储其中,在训练 Q 网络时再随机从中抽取若干数据进行训练;最后,DQN引入了目标网络的概念,这有助于提高算法在训练过程中的稳定性。
  • DQNPytorch.zip
    优质
    本资源提供了使用Python深度学习框架PyTorch实现的经典DQN(Deep Q-Network)算法代码。适合研究和理解基于强化学习的智能决策过程。 PyTorch 实现 DQN 强化学习涉及使用 PyTorch 框架来构建深度 Q 网络(DQN),这是一种用于训练智能体在环境中采取行动以获得最大累积奖励的算法。实现过程中,通常包括定义神经网络结构、设计经验回放机制以及设置目标Q网络更新策略等步骤。这种技术广泛应用于解决各种决策问题,如游戏玩法规则的学习和机器人导航任务优化等领域。
  • :在PyTorchDQN、SAC、DDPG、TD3等RL
    优质
    本书深入讲解了如何使用PyTorch框架实现多种深度强化学习算法,包括DQN、SAC、DDPG和TD3,是掌握现代智能决策系统技术的绝佳资源。 使用Pytorch实现的深度强化学习算法列表如下: 关于深入探讨实验结果: - 离散环境:LunarLander-v2 - 连续环境:Pendulum-v0 所涉及的具体算法包括: 1. DQN(Deep Q-Network) 2. VPG(Vanilla Policy Gradient) 3. DDPG(Deterministic Policy Gradient) 4. TD3(Twin Delayed Deep Deterministic Policy Gradient) 5. SAC(Soft Actor-Critic) 6. PPO(Proximal Policy Optimization) 使用方法: 只需直接运行文件中的相应算法。 在学习这些算法的过程中,由于它们来自不同的来源,因此各个算法之间没有通用的结构。 未来计划:如果有时间,我将为电梯控制系统添加一个简单的强化学习程序,并改进实验结果展示图形。
  • MatLab中_控制_Q与神经网络
    优质
    本项目探讨了利用MatLab实现基于深度Q学习算法的倒立摆控制系统。结合神经网络优化策略,旨在提高系统的稳定性和响应速度。 MatLab强化学习代码包使用深度Q学习(神经网络)来控制倒立摆。详细内容可参考我的专栏《强化学习与控制》。 关于原文的第二部分,“I thought what Id do was Id pretend I was one of those deaf-mutes, or should I?” 可以重写为:“我想我可能会假装自己是个聋哑人,或者我不该这么做吗?”