Advertisement

步进电机驱动电路图汇总

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源汇集了多种步进电机驱动电路的设计方案和实例应用,旨在帮助电子工程师和技术爱好者深入理解步进电机的工作原理及其在不同场景下的应用技巧。 步进电机驱动电路图一介绍了BYG通用系列二相步进电机常用的单极性和双极性两种驱动电路的设计方案,从原理上展示了如何控制二相步进电机的方法,并增加了设计的灵活性。这两种设计方案都使用了一片可在线编程的AT89S52单片机作为控制器,通过达林顿功率管TIP142组成的电路进行驱动,结构简单且思路清晰。 对于三相反应式步进电机和四线步进电机也有相应的驱动电路图供参考。值得注意的是,在设计适用于输入电压为12V的四线步进电机驱动电路时,如果使用高电压,则需要单独提供场效应管所需的电源供应。 在LB1836M构成的步进电机驱动电路中,引脚INl、IN2、IN3和IN4用于接收步进脉冲信号。输出端OUT1、OUT2、OUT3及OUT4分别连接到热敏打印头中的相应电机线圈(如A相与NA相等)。这些输入与输出之间存在直接的逻辑关系,即 OUT= IN。通过控制引脚VS上的电压来调节步进电机的工作电流大小,进而影响其性能表现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本资源汇集了多种步进电机驱动电路的设计方案和实例应用,旨在帮助电子工程师和技术爱好者深入理解步进电机的工作原理及其在不同场景下的应用技巧。 步进电机驱动电路图一介绍了BYG通用系列二相步进电机常用的单极性和双极性两种驱动电路的设计方案,从原理上展示了如何控制二相步进电机的方法,并增加了设计的灵活性。这两种设计方案都使用了一片可在线编程的AT89S52单片机作为控制器,通过达林顿功率管TIP142组成的电路进行驱动,结构简单且思路清晰。 对于三相反应式步进电机和四线步进电机也有相应的驱动电路图供参考。值得注意的是,在设计适用于输入电压为12V的四线步进电机驱动电路时,如果使用高电压,则需要单独提供场效应管所需的电源供应。 在LB1836M构成的步进电机驱动电路中,引脚INl、IN2、IN3和IN4用于接收步进脉冲信号。输出端OUT1、OUT2、OUT3及OUT4分别连接到热敏打印头中的相应电机线圈(如A相与NA相等)。这些输入与输出之间存在直接的逻辑关系,即 OUT= IN。通过控制引脚VS上的电压来调节步进电机的工作电流大小,进而影响其性能表现。
  • 四线
    优质
    本资料提供四线步进电机的详细驱动电路图,涵盖原理说明和实践应用示例,适合电子爱好者和技术人员参考学习。 本段落介绍四线步进电机驱动电路图,一起来学习一下。
  • 原理
    优质
    本资源详细介绍了一种步进电机驱动板的电路设计与工作原理。通过清晰的电路图和详细的解析,帮助用户理解并掌握步进电机控制技术的核心知识。 该文档解决了步进电机的问题,方便读者快速找到所需的资料。
  • TB67S128FTG
    优质
    本资料详尽展示了TB67S128FTG步进电机驱动器的电路连接方式与关键参数设置,帮助用户快速掌握其应用技巧。 东芝最新推出了一款128高细分50V 5A大电流输出的纯硬件方式步进电机驱动IC-TB67S128FTG,并提供了其电路图参考。
  • L298原理
    优质
    本资源提供L298步进电机驱动电路的详细原理图,帮助用户了解其工作原理与设计思路,适用于学习和实际应用中的参考。 ### L298N驱动电路详解:电路原理与步进电机驱动应用 #### 一、L298N驱动电路概述 L298N是一种常用的双全桥式电机驱动芯片,广泛应用于各种直流电机和步进电机的控制场景中。它能够为两个直流电机提供双向驱动能力,并且可以用来驱动一个两相或四相步进电机。该芯片具有电流保护功能,适用于多种电压范围,使其成为许多电子项目中的理想选择。 #### 二、L298N驱动电路原理分析 从提供的部分电路图可以看出,我们可以看到L298N芯片的核心部分以及与其相关的外围电路设计。下面将详细介绍这些组件的功能及其在电路中的作用。 ##### 1. L298N芯片引脚说明 - **ENA (Enable A)**:控制A通道的使能输入。 - **ENB (Enable B)**:控制B通道的使能输入。 - **IN1、IN2、IN3、IN4**:这些是用于控制电机方向的输入端口。其中,IN1和IN2用于控制A通道的电机,而IN3和IN4则用于控制B通道的电机。 - **OUT1、OUT2、OUT3、OUT4**:这是输出给电机的端口,具体来说,OUT1与OUT2连接到A通道的电机上,而OUT3与OUT4则是为了驱动B通道的电机设计。 - **ISENA、ISENB**:用于外部电流检测的引脚。 - **VS**:电源输入端,通常接+12V至+46V之间的直流电压源。 - **VSS、GND**:接地端口。 ##### 2. 外围电路解析 - **稳压电路**:使用AMS-1117-5.0稳压器将输入电源降至5伏特,为L298N的逻辑部分供电。C1和C2是去耦电容,用于滤除电源噪声以确保稳定的电压供应。 - **电流检测电阻**:通过ISENA与ISENB引脚外接合适的电阻来实现对电机工作时电流大小的监测,这对于过流保护至关重要。 - **散热片**:L298N在大电流驱动情况下会产生较多热量,因此需要配合使用散热片以提高工作效率并延长使用寿命。 - **二极管保护电路**:通过在OUT1至OUT4端口分别接入多个肖特基二极管(例如D1-D8),它们的作用是在电机停止时提供续流路径来防止反向电动势对驱动电路造成损害。 #### 三、步进电机驱动应用 步进电机是一种能够根据脉冲信号实现精确角度移动的特殊类型电机。L298N可以用来控制这类电机,通过调整IN1至IN4引脚的状态变化来改变其旋转方向,并且可以通过调节脉冲频率来影响电机的速度。 ##### 1. 驱动模式 - **单拍半步驱动**:每次发送一个脉冲后,电机转动半个步距角。 - **全拍驱动**:每接收到一次脉冲信号时,电机就会移动完整的一个步距角度。 - **微步驱动**:通过更精细地控制电流大小,在两个连续的完整步骤之间实现更多的小幅度位移,从而达到更高的分辨率。 ##### 2. 控制电路设计 - **控制信号生成**:使用微控制器或其他数字逻辑器件来产生精确的脉冲和方向信号。 - **接口电路**:将这些由微处理器产生的低电平或高电平输出转换为适合L298N输入电压范围内的电信号形式。 - **保护措施设计**:包括过流防护、过热监测等,确保整个系统的稳定性和可靠性。 #### 四、总结 通过对L298N驱动电路原理及其在步进电机控制中的应用分析可以看出,该芯片是一款非常实用的电机驱动解决方案。通过合理的外围电路设计可以大大提高电机控制精度和系统整体性能表现。同时,在实际操作过程中还需注意散热管理和保护机制的设计以确保系统的长期稳定运行。
  • STM32F103.zip_控制__
    优质
    本资源包包含基于STM32F103系列微控制器的步进电机驱动程序与电路设计,适用于步进电机控制系统开发。 使用STM32F103系列单片机编写步进电机驱动的代码可以非常简便。这种类型的单片机具有丰富的外设资源和强大的处理能力,适用于多种控制应用,包括步进电机的精确控制。通过配置定时器或脉冲宽度调制(PWM)信号来生成合适的时序波形以驱动步进电机,能够实现对电机速度、方向等参数的有效调控。 编写此类代码的基本步骤通常包含:初始化单片机的相关引脚和外设;设置所需的定时器或者PWM通道;根据实际需求编写中断服务程序或直接在主循环中进行控制逻辑的处理。此外,在具体应用开发过程中,还需要考虑步进电机的工作模式(如全步、半步等)以及驱动电路的选择等因素。 以上描述旨在提供一个简单的概述来帮助开发者快速上手使用STM32F103系列单片机实现对步进电机的基本控制功能。
  • LV8727原理
    优质
    本资料提供LV8727步进电机驱动板详细电路图及工作原理解析,涵盖硬件连接与控制逻辑说明,适合电子工程爱好者和技术人员参考学习。 基于芯片LV8727的步进电机驱动板原理图支持最大128细分设置,并可选择4A以下的不同电流档位,适用于驱动28、42、57等多种型号的步进电机。
  • Linux_stepmotor_linux__
    优质
    本项目聚焦于开发适用于Linux操作系统的步进电机驱动程序,旨在提供高效、稳定的电机控制解决方案。通过精准算法优化步进电机性能,广泛应用于自动化设备和机器人技术中。 基于嵌入式Linux控制步进电机的测试程序包括源程序、驱动文件以及头文件,并且附带了makefile以方便编译和构建项目。
  • 器光耦
    优质
    本资料汇集各类继电器与光耦合器驱动电路设计,为电子工程师提供详尽的技术参考和创新灵感。 光耦驱动继电器电路图(一):1U1的第1脚可以连接至12V或5V电源,当有电压输入时,1U1导通并触发1Q1导通;此时在3端口处测得0V,并且线圈两端将获得大约为11.7V的工作电压。若未接电或者接地,则电路中的元件不工作,即1U1不通和1Q1截止状态,在此状态下3端子的读数约为11.9V,继电器线圈两端则没有供电。 注:“DYD_CPU_OUT”与LPC2367相连并输出高低电平控制信号。当“DYD_CPU_OUT”处于高电平时,则电路中的元件不工作(即1U4不通和1Q7不通),此时UCE=12V,继电器线圈两端电压为0V;若该引脚输入低电平,“DYD_CPU_OUT”则导通,使得U43约为1V、U3约等于11V,并且最终导致电路断开(即UCE降至0V)并使能驱动端口Q7-3输出至接近于0的电压值。此时继电器线圈两端获得大约为11.7V的工作电压。 这两种配置适用于CPU初始化时GPIO口处于高电平状态下,以防止在启动过程中造成误动作现象。“DYD_CPU_OUT”与LPC2367相连并输出高低电平控制信号,在低电平时电路中的元件不工作(即1U4不通和1Q7不通),此时UCE=12V,并且继电器线圈两端电压为0V;若该引脚输入高电平,“DYD_CPU_OUT”则导通,使得U43约为1V、U3约等于11V并最终导致电路断开(即UCE降至0V)和驱动端口Q7-3输出至接近于0的电压值。此时继电器线圈两端获得大约为11.7V的工作电压。 此图表示的是高电平使能模式下,继电器常闭触点连接负载的状态。
  • CAN线
    优质
    CAN总线步进电机驱动器是一种通过CAN通信协议控制步进电机运行的设备,适用于工业自动化领域。它支持精准定位与速度调节,具有高可靠性和灵活性。 该资料详细介绍了VSMD116系列CAN总线步进电机驱动器的使用方法,包括帧格式、协议格式等内容,有助于研发人员快速开发。