Advertisement

利用深度强化学习进行连续控制,CH。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
This version, titled “DDPG Chinese” (Deep Deterministic Policy Gradient in Chinese), offers a translation for continuous control utilizing deep reinforcement learning. It is derived from the original English resource.

全部评论 (0)

还没有任何评论哟~
客服
客服
  • (DDPG中文)基于CH
    优质
    本项目采用深度确定性策略梯度算法(DDPG),探索并实现了在复杂环境中的连续动作空间优化控制,结合神经网络模型以解决强化学习中连续控制问题。 Continuous control with deep reinforcement learning (DDPG) is a method that applies deep neural networks to solve continuous control problems in the field of reinforcement learning. This approach combines actor-critic methods with experience replay and target network techniques, allowing agents to learn optimal policies for complex environments through trial and error. DDPG can be applied to various tasks such as robotics, gaming, finance, and more where precise control over continuous action spaces is required.
  • P2_:Udacity纳米位课程项目2-机械臂
    优质
    本项目为Udacity深度强化学习纳米学位课程第二部分,专注于通过连续控制算法优化机械臂运动路径,实现高效精准操作。 项目2:连续控制介绍 在这个项目中,您将使用一个特定的环境。在此环境中,双臂可以移动到目标位置。每当代理人的手靠近目标位置一步时,都会获得+0.1的奖励分数。因此,代理人需要尽可能长时间地保持其手在目标位置上。 观察空间由33个变量组成,分别对应于手臂的位置、旋转、速度和角速度等信息。每个动作是一个包含四个数字的向量,代表施加到两个关节上的扭矩值。该向量中的每一个数值应在-1至1之间。 分布式训练 对于此项目,您将获得两种不同的Unity环境版本:第一个版本仅包括一个代理;第二个版本则含有20个相同的代理副本,在各自的独立环境中运行。第二种版本非常适合那些采用多份(非交互且并行的)代理人副本来分散经验收集任务的方法和算法。 解决环境 请注意,您的项目提交只需满足上述两个版本中的任意一个即可。选择一:解决第一个版本
  • Python
    优质
    本课程旨在教授学员如何使用Python语言进行深度学习项目开发,涵盖基础理论和实战应用。适合编程及数据分析爱好者。 基于Python的深度学习教程浅显易懂,适合初学者快速入门。
  • 的机器人运动
    优质
    本研究探索了利用深度强化学习技术优化机器人运动控制的方法,通过模拟环境训练模型,实现了更高效、灵活且适应性强的机器人动作规划与执行。 强化学习范式原则上允许复杂行为直接从简单的奖励信号中进行学习。然而,在实际应用中,通常需要手工设计特定的奖励函数以促进某些解决方案或从演示数据中推导出奖励机制。本段落探讨了如何通过丰富环境来推动复杂行为的学习过程。我们明确地在不同的环境中训练代理,并发现这有助于它们形成一系列任务中的稳健表现。 具体而言,我们在运动领域展示了这一原则的应用——这是一个众所周知的行为对奖励选择敏感的案例。在一个平台上,我们使用简单的奖励函数培训多个模拟物体,在此过程中设置各种具有挑战性的地形和障碍物以测试其向前进展的能力。通过采用一种新的可伸缩策略梯度变体强化学习方法,我们的代理能够在没有明确基于奖励指导的情况下学会跑步、跳跃、蹲下以及转身等动作。 有关这种行为的学习过程的视觉描述可以在相关视频中查看。
  • 路径规划
    优质
    本研究采用强化学习算法优化移动机器人或自动驾驶车辆的路径规划问题,旨在提高导航效率和安全性。通过智能决策过程,在复杂环境中实现动态路径选择与避障。 在网格环境中使用强化学习算法进行了路径规划。
  • DQN——
    优质
    DQN是一种基于深度学习的强化学习算法,通过使用神经网络作为Q函数的参数化表示,有效解决了连续状态空间下的决策问题,在 Atari 游戏等多个领域取得了突破性成果。 本段落介绍了一种将深度学习与强化学习相结合的方法,旨在实现从感知到动作的端对端学习的新算法。在传统的Q-learning方法中,当状态和动作空间是离散且维度较低时,可以使用Q-Table来存储每个状态行动对的Q值;然而,在处理高维连续的状态和动作空间时,使用Q-Table变得不切实际。通常的做法是将更新Q-Table的问题转化为其他形式解决。
  • DQN——
    优质
    DQN(Deep Q-Network)是深度强化学习中的重要算法,它结合了深度神经网络与Q学习,能够有效解决复杂环境下的决策问题。 本段落介绍了一种结合深度学习与强化学习的方法,用于实现从感知到动作的端对端学习的新算法。在传统的Q-learning方法中,当状态和行动空间为离散且维度不高时,可以使用Q-Table来存储每个状态-行为组合的Q值;然而,在面对高维连续的状态或行动空间时,使用Q-Table变得不再实际可行。 通常的做法是将更新Q表的问题转化为一个函数逼近问题。这种方法可以通过调整参数θ使预测得到的Q函数尽可能接近最优解。深度神经网络能够自动提取复杂的特征表示,因此在处理状态和动作维度较高的情况下,采用深度学习方法来近似Q值显得尤为合适。这种结合了深度学习与强化学习的方法被称为DRL(Deep Reinforcement Learning)。
  • 聚合聚类:聚类
    优质
    本研究提出了一种基于强化学习的新颖聚类算法——增强聚合聚类,该方法能够有效提高数据聚类的质量和效率。通过智能探索与优化策略,系统地解决了传统聚类方法中参数难以调优、对初始条件敏感等问题。 为了克服传统聚类方法中的贪婪性问题,我们提出了一种基于强化学习的解决方案来改进凝聚聚类技术。这种方法通过将聚集聚类过程建模为马尔可夫决策过程(MDP)来进行优化,从而能够学习到更加非贪婪性的合并策略。 层次聚类通常采用一种“自下而上”的方法,在这种情况下每个观测值开始时都在单独的簇中,并随着层级上升逐渐进行合并操作。由于聚集聚类本质上是一个顺序决策问题——早期做出的选择会影响后期的结果,传统的链接标准无法通过简单地评估当前阶段集群间的相似度来解决问题。 因此,我们将聚类过程建模为马尔可夫决策过程(MDP),并利用强化学习技术对其进行求解。代理需要学会非贪婪的合并策略,以选择每个合并操作从而获得长期的优化奖励。具体来说,状态被定义为当前簇特征表示;动作则对应于将集群i和j进行合并。 我们采用Q学习算法来计算给定状态下执行特定行动的价值,并在训练阶段使用图像的真实标签作为反馈信号来评估代理行为的质量。而在测试过程中,则会尝试不同的数据集以验证该模型的有效性和泛化能力。
  • 基于的自主式水下航系统
    优质
    本研究提出了一种基于深度强化学习的自主式水下航行器深度控制方法,通过智能算法优化航行器在复杂海洋环境下的稳定性与机动性。 本段落探讨了基于深度强化学习算法的自主式水下航行器(AUV)在深度控制问题上的应用研究。与传统控制方法不同的是,该方法让航行器能够通过自我学习获得最佳的控制策略,从而避免了人工建立精确模型和设计复杂控制律的需求。具体而言,利用深度确定性策略梯度技术构建了actor和critic两种神经网络:其中actor负责输出具体的行动方案;而critic则用于评估这些行动的有效性和合理性。通过训练这两种网络,可以实现AUV的自主深度调控功能,并在OpenAI Gym仿真环境中验证该算法的实际效果。
  • 猫狗分类
    优质
    本项目运用深度学习技术,致力于区分图像中的猫与狗。通过训练大规模数据集,模型能够准确识别并分类这两种常见的宠物动物。 1. 使用Kaggle上的“猫与狗”数据集中的train文件。 2. 实现对数据集的加载、读取和划分,并将图片转化为相同尺寸;展示每个类别的前5张图片; 3. 利用torch或tensorflow框架建立卷积神经网络模型并画出网络结构图,必要时可以添加注释说明; 4. 训练模型,输出迭代训练过程中的损失值、准确率和测试集的准确率等参数(测试集准确率达到75%以上);从图像中可以看出,在训练过程中,准确度逐步上升,并基本稳定在90%以上。 5. 可以与现有或改进后的其他模型进行对比;保存该模型。随机抽取十张图片做测试结果验证,概率准确率需达到95%以上。