Advertisement

基于进化策略的公交调度方案.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种创新性的公交调度方案,采用进化策略优化公交系统的运行效率与服务质量。通过模拟自然选择机制,算法能够自适应地调整车辆调度和路线分配,有效缓解交通拥堵并提高乘客满意度。该方法具有广泛的应用前景及实际操作价值。 声明:食用的时候,请记得标明出处哦,尊重他人的劳动成果很重要。这些东西是我们团队一起努力的结果,如果没有我的小伙伴们的支持,我也不能与大家分享这些内容了。我上传的内容已经得到了他们的同意,非常感谢他们的慷慨支持~ 另外,包中包含了完整的数据、可以直接运行的代码、我们的论文以及一篇主要参考文献。代码部分主要借鉴了莫烦python的相关资料,因此要特别感谢提供了文献和代码参考资料的所有作者们鸭。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .zip
    优质
    本研究提出了一种创新性的公交调度方案,采用进化策略优化公交系统的运行效率与服务质量。通过模拟自然选择机制,算法能够自适应地调整车辆调度和路线分配,有效缓解交通拥堵并提高乘客满意度。该方法具有广泛的应用前景及实际操作价值。 声明:食用的时候,请记得标明出处哦,尊重他人的劳动成果很重要。这些东西是我们团队一起努力的结果,如果没有我的小伙伴们的支持,我也不能与大家分享这些内容了。我上传的内容已经得到了他们的同意,非常感谢他们的慷慨支持~ 另外,包中包含了完整的数据、可以直接运行的代码、我们的论文以及一篇主要参考文献。代码部分主要借鉴了莫烦python的相关资料,因此要特别感谢提供了文献和代码参考资料的所有作者们鸭。
  • 算法在MATLAB中应用
    优质
    本研究提出了一种基于进化策略的公交调度算法,并使用MATLAB进行实现与验证。该算法旨在优化城市公共交通系统的效率和可靠性,通过模拟自然选择机制来动态调整车辆运行计划,减少乘客等待时间并提高资源利用率。实验结果表明,此方法在多种场景下均表现出了良好的适应性和鲁棒性。 基于进化策略算法实现公交车调度的人工智能课程设计,为原创作品,在MATLAB上调试通过。
  • 充电纯电动(2015年)
    优质
    本研究针对2015年的课题,探讨了通过调整纯电动公交车的充电策略来优化其运营调度的方法,旨在提高公交系统的效率和可靠性。 本段落提出了一种针对单线路及单一充电站的纯电动公交车辆调度算法,旨在通过最小化所需车辆数来优化运营效率。该算法综合考虑了充电区间、充电速率、电池状态以及发车策略等关键因素,并采用车队整体优化的方法来确保每辆车的均衡使用率和最低营运成本。 以东莞松山湖的一条具体公交线路为例,研究分析发现:通过改进发车时刻表和调整车辆耗电情况可以显著减少所需运营车辆的数量。同时,在与传统调度算法进行对比后得出结论:本段落提出的优化策略不仅减少了所需的车辆数量,还提高了每辆车的使用效率,从而实现了车队成本最小化的目标。
  • 模型分析
    优质
    本研究构建了一个针对城市公共交通系统的调度优化模型,旨在通过算法改进公交线路和班次安排,以提高运输效率和服务质量。 随着城市化进程的加快,公共交通系统的重要性越来越突出。公交车调度方案优化模型是缓解交通拥堵、改善市民出行体验及提升公交公司经济效益和社会效益的关键工具。此模型通过分析某市一条特定线路的客流数据与运营情况,构建了一个旨在同时最大化社会效益和经济利益的理想化调度方案。 在第一个模型中,我们建立了考虑最大载客量和发车次数的数学框架,并运用决策方法确定了各时段的最大乘客容量数,在确保车辆满载率及所有乘客都能被运送的前提下,计算出每天至少需要462次发车间隔和60辆公交车。同时提供了详细的整点发车时刻表。 第二个模型采用层次分析法来评估不同载客量(120、100、50)下的乘客满意度与公交公司运营效率之间的关系,并通过拟合得出双方的满意程度函数,即目标为最大化总满意度的同时最小化两者间的差距。最终求得上下行的最佳组合值为(0.8688, 0.8688),此时发车间隔应调整至474次且使用50辆公交车。 整个模型的主要目的是为了实现公交公司经济效益与社会效益的最大化,同时满足乘客的实际需求和满意度。在制定方案时考虑了包括经济收益、等待时间以及乘车舒适度等多项因素,并通过层次分析法及整数规划方法给出具体的优化策略。 该模型的假设条件为交通流畅无阻塞且车辆状态良好,在运营期间最迟发车间隔不超过20分钟,行进过程中各车不追赶或超越前车。乘客到达车站的人流量被视为负指数分布模式,并遵循先到者优先的原则上车等待。 此优化方案能够有效满足公交公司和乘客的共同需求,提高企业的经济效益和社会形象,改善市民出行体验,并有助于缓解城市交通压力。 模型的优点包括:全面考虑了经济利益、等候时间和乘车舒适度等多方面因素;运用层次分析法与整数规划方法构建调度策略;最终实现了企业效益最大化以及公共服务质量提升的目标。然而也存在一些局限性,例如未考虑到实际运营中可能出现的意外状况(如交通堵塞或车辆故障)及环境影响等问题。 综上所述,该公交车调度方案优化模型能够满足公交公司和乘客的需求,在提高经济效益的同时改善市民出行体验并缓解城市交通拥堵问题。但在实践中还需进一步考虑更多外部因素的影响。
  • Linux中
    优质
    本简介探讨了Linux操作系统中进程调度的基本原理与策略,包括实时调度、时间片轮转等机制,阐述如何优化系统性能和资源分配。 Linux内核的三种主要调度策略包括: 1. SCHED_OTHER:分时调度策略。 2. SCHED_FIFO:实时调度策略,采用先到先服务的方式。 3. SCHED_RR:另一种实时调度策略,使用时间片轮转方式。 在这些策略中,具有实时属性的任务将优先被调用。具体而言,在同一优先级下,SCHED_FIFO和SCHED_RR中的任务依据各自的优先级别获得相应的调度权值;而分时进程则通过nice值及counter值来决定其调度权重。对于后者来说,较低的nice数值以及较高的counter值得到了更高的概率以获取CPU资源,并且那些较少使用过计算能力的任务将被系统给予更多的关注。 关于SCHED_RR与SCHED_FIFO的区别在于:当一个采用SCHED_RR策略运行的时间片耗尽时,该进程会被重新分配一个新的时间片段并放置于等待队列的末端。这种安排确保了所有同优先级级别的RR任务能够公平地获取到CPU资源的机会。
  • 学习算法
    优质
    本研究提出了一种基于深度强化学习的创新算法,专门用于优化复杂系统中的调度策略。通过模拟和迭代学习过程,该方法能够自动发现并实施高效的资源分配方案,显著提升系统的运行效率与性能稳定性。 深度强化学习的调度策略优化算法可以通过研究项目“walk_the_blocks”来进一步探索。该项目致力于通过深度强化学习技术改进调度策略,并提供了一种新颖的方法来解决复杂系统的资源分配问题。
  • YOLOv5与优.zip
    优质
    本资料探讨并实施了对YOLOv5目标检测模型的各种改进和优化方法,旨在提升其性能、速度及准确性。 yolov5改进优化策略.zip包含了对YOLOv5模型的多种改进和优化方法。文件内详细介绍了如何提升模型性能、加速训练过程以及改善检测精度等方面的策略。这些改进对于希望在实际应用中进一步提高YOLOv5效果的研究人员和技术开发者来说非常有价值。
  • 粒子群算法微电网多目标优
    优质
    本研究提出了一种改进的粒子群算法,专门用于解决微电网中的多目标优化调度问题。通过调整算法参数和引入自适应机制,显著提高了寻优效率与精度,为微电网经济、环保运行提供了有效解决方案。 微电网是一种分布式能源系统,它集成了多种可再生能源和储能装置,并能够独立或并网运行以提供可靠的电力服务。在微电网的运营中,实现经济性和环保性的最佳平衡是一项重要的任务。本段落主要探讨了如何运用改进的粒子群优化算法(PSO)来解决微电网中的多目标优化调度问题。 微电网的优化调度模型通常考虑两个关键目标:一是运行成本最小化;二是环境保护成本最小化。其中,运行成本包括燃料消耗、设备维护以及电力购买等费用;环保成本则涉及排放物处理和环境影响减少等方面。这两个目标之间往往存在冲突,因此需要通过多目标优化方法来寻找一个合理的折衷方案。 粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的全局优化技术,模拟了鸟群觅食的行为模式。在微电网调度问题中,每个粒子代表一种可能的调度策略,并且其速度和位置更新受到自身最优解与全局最优解的影响。然而,在处理复杂优化问题时,标准PSO可能会出现早熟收敛或陷入局部最优点的情况。 为了改善PSO的表现,通常会对其进行改进。常见的改进措施包括: 1. **惯性权重调整**:在初始阶段赋予较大的惯性权重以鼓励探索行为;随后减小该值来促进对最优解的进一步搜索。 2. **学习因子调节**:根据问题的具体情况动态地改变个人最好经验和全局最好经验的学习因子,从而平衡全局和局部搜索的能力。 3. **混沌或随机扰动引入**:通过加入混沌序列或者随机干扰元素增加算法探索新区域的可能性,防止陷入局部最优点。 4. **保持种群多样性策略**:采用精英保留机制、重组等方法来维护群体的多样性和丰富性,避免过早收敛到单一解上。 5. **结合其他优化技术**:通过集成模拟退火或遗传算法等局部搜索手段提高解决方案的质量。 在实际应用改进PSO解决微电网调度问题时,首先需要将运行成本和环保成本转换为一个综合的适应度函数。之后利用该算法寻找能够使适应度函数值达到最优水平的具体策略。此过程中需考虑光伏、风能发电装置以及柴油发电机等设备的特点,并且要考虑到电力市场动态价格及用户负荷需求等因素的影响。 通过上述优化措施,微电网可以更有效地减少运行成本和环保支出的同时确保供电的稳定性和满足用户的能源需求。在实际操作中,则需要借助软件工具(如Matlab或Python)进行算法编程与仿真验证工作。
  • 学习通信号管控.pdf
    优质
    本文探讨了利用深度强化学习技术优化城市交通信号控制的方法,旨在提高道路通行效率和减少拥堵现象。通过模拟实验验证算法的有效性,并分析其在实际应用中的潜力与挑战。 基于深度强化学习的交通信号控制方法 一、深度强化学习:这是一种结合了深度学习与强化学习优点的技术。通过使用深层神经网络来近似价值函数或策略函数的方法,能够使系统在复杂环境中做出有效的决策。此技术适用于处理高维度的状态和动作,并能解决延迟奖励的问题。 二、分布式强化学习:它是一种基于多个智能体(Agent)的强化学习方法,每个智能体都能独立地与环境进行交互并学会与其他智能体协作以达成共同目标。在交通信号控制领域中,这种策略可以应用于多个交叉路口的协调管理,实现自适应调整和优化。 三、深度神经网络:这是一种能够识别复杂数据关系的强大机器学习模型。通过近似价值函数或策略函数的方式,在强化学习场景下发挥关键作用。特别是在交通信号控制系统设计时,该技术有助于开发更有效的控制策略。 四、目标网络、双Q网络及价值分布提升方法:这些是深度强化学习中常用的改进机制。其中,“目标网络”用于逼近长期的价值评估;“双Q网络”则专注于提高动作选择的质量和效率。“价值分布提升模型”的引入进一步提升了算法的学习速率与稳定性,在实际应用如交通信号控制方面具有显著优势。 五、交通信号控制系统:作为智能城市基础设施的一部分,其主要任务是实时调整各路口的红绿灯状态以缓解拥堵状况。基于深度强化学习的方法能够动态地适应不断变化的城市道路条件,并持续优化通行效率和安全水平。 六、SUMO(Urban Mobility仿真工具): 该平台用于模拟城市交通系统的运行情况,对于评估新的交通控制算法的表现非常有用。 七、智能交通系统:这是一个集成多种技术的综合管理系统,旨在提升整体的道路使用体验。除了信号灯管理外还包括实时数据收集与分析等功能模块。深度强化学习的应用可以增强其中的关键环节如流量预测和优化策略制定等部分的功能性。 八、信息汇集机制:这是确保整个智能交通网络正常运行的基础架构之一,负责采集并处理各类交通相关的信息流。 九、流动趋势预测:通过利用历史数据及实时监测结果来预估未来的车辆移动模式和发展态势,在设计更有效的信号灯控制策略时极为重要。 十、流量优化措施: 这种技术手段致力于改善道路通行能力和资源配置效率。在具体实施过程中,可以根据实际交通状况灵活调整各个路口的红绿灯配比以达到最佳效果。
  • 学习避障训练.zip
    优质
    本项目采用深度强化学习算法,旨在开发高效的自主机器人避障策略。通过智能体与环境交互不断优化路径选择,提高移动机器人的导航能力及安全性。 深度学习使用技巧与模型训练的实战应用开发小系统参考资料及源码参考适用于初学者和有经验的开发者,能够帮助快速上手并建立深度学习模型。