Advertisement

OpenCV NCC 多视角灰度匹配演示

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
NCC已经成功地被打包成动态链接库(dll),请注意,此演示程序并未包含Ncc的源代码,因此在下载时请务必小心谨慎,访问链接:https://blog..net/weixin_43493903/article/details/128178963。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • OpenCV NCC
    优质
    本示例展示了如何使用OpenCV库进行多视角下的灰度图像匹配,通过归一化互相关(NCC)算法实现精确匹配。 NCC已封装为dll,在此Demo中不包含Ncc的源码,请谨慎下载。详情可参考相关文章:https://blog..net/weixin_43493903/article/details/128178963(此处删除链接)
  • C# Opencvsharp NCC模板(兼容
    优质
    本项目利用C#和Opencvsharp实现NCC( normalized cross-correlation)算法进行图像模板匹配,并针对不同角度进行了优化处理以提高匹配准确度。 C# opencvsharp 提供了 NCC(归一化互相关)模板匹配功能,并支持多角度的图像处理需求。
  • OpenCV模板
    优质
    本示例展示如何使用OpenCV库进行图像中的对象检测,具体实现通过模板匹配算法识别和定位特定目标在图片内的位置。 OpenCV 是一个由 Intel 开源的计算机视觉库,包含了一系列 C 函数和少量 C++ 类来实现图像处理及计算机视觉领域的通用算法。 重要特性方面,它具有超过 300 个跨平台中高层 API 的函数集合,并且不依赖于其他外部库——尽管可以选择使用某些外部库。
  • Python使用OpenCV实现NCC旋转
    优质
    本项目利用Python语言结合OpenCV库,实现了基于规范化互相关(NCC)算法的图像旋转匹配技术,适用于精确识别和定位旋转变化的图像特征。 1. 圆投影确保了旋转匹配的准确性。 2. 通过积分运算减少了计算量,并提高了匹配速度。 3. 实现降采样以优化处理过程。
  • NCC算法详解
    优质
    本文详细解析了NCC(.normalized cross-correlation)匹配算法的工作原理、应用范围及其在图像处理中的重要性,并探讨其优缺点。 本段落探讨了匹配算法中的NCC(归一化互相关)原理及其代码实现示例,并对比分析了NCC与其它对中匹配算法的效果差异。
  • 的MATLAB算法
    优质
    本简介介绍了一种基于MATLAB平台实现的图像处理技术——灰度匹配算法。此算法能够有效调整和优化不同光源或环境下图像间的灰度一致性,广泛应用于图像融合、对比度增强等领域。 MATLAB灰度匹配算法在图像处理和机器视觉领域有广泛应用。该算法用于调整两幅图像之间的灰度值差异,使之更加接近或一致。
  • 模板例:利用OpenCV Python实现次模板代码
    优质
    本项目通过Python结合OpenCV库展示了如何执行多模板匹配技术。它包含详尽的代码示例,用于演示在单个图像上查找多个对象位置的过程。 在OpenCV库中,模板匹配是一种图像处理技术,用于在大图像中寻找与特定模板(小图像)相似的区域。这种技术广泛应用于图像识别、物体定位等领域。利用Python编程环境中的OpenCV提供的API可以轻松实现这一功能。 下面我们将详细探讨如何使用OpenCV Python进行多个模板匹配,并基于multiple-template-matching项目进行解析: 首先,我们需要导入必要的库文件:包括OpenCV(cv2)、Numpy(用于数组操作)和Matplotlib(用于图像显示): ```python import cv2 import numpy as np import matplotlib.pyplot as plt ``` 在多模板匹配中,我们可能有一系列不同的小图片作为模板,并需要找到它们分别出现在目标大图中的位置。以下是基本步骤: 1. **加载图像和模板**:我们需要先读取主图像以及所有的小模板图像: ```python target_image = cv2.imread(target.jpg) templates = [template1.jpg, template2.jpg, template3.jpg] template_images = [cv2.imread(template, 0) for template in templates] # 加载为灰度图,方便后续处理。 ``` 2. **模板匹配**:使用`cv2.matchTemplate()`函数对每个小图像(即每一个可能的物体)进行搜索。这个函数返回一个与模板大小相同的二维数组,其中每个元素表示在主大图片中对应位置处该对象被找到的概率: ```python matching_methods = [cv2.TM_CCOEFF_NORMED, cv2.TM_SQDIFF_NORMED] matches = {method: [] for method in matching_methods} for template in template_images: for method in matching_methods: result = cv2.matchTemplate(target_image, template, method) matches[method].append(result) # 存储每个方法的结果 ``` 3. **确定匹配区域**:为了找到最佳的匹配位置,我们可以设置一个阈值,并使用`cv2.minMaxLoc()`函数来定位最大(或最小)概率的位置。这些坐标就是模板在目标图像中的大致位置: ```python threshold = 0.8 # 设置阈值以过滤低质量的结果 for method, results in matches.items(): for result in results: min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) if method == cv2.TM_SQDIFF_NORMED: # 根据不同的匹配方法选择最大或最小值作为最佳位置 if max_val < threshold: match_location = max_loc else: if min_val > threshold: match_location = min_loc ``` 4. **显示结果**:最后,我们可以用矩形框标出每个找到的模板的位置,并将结果显示出来: ```python for method, locations in matches.items(): for i, location in enumerate(locations): template_name = f{method} ({templates[i]}) match_color = (0, 255, 0) if method == cv2.TM_SQDIFF_NORMED else (0, 0, 255) match_thickness = 2 if method == cv2.TM_SQDIFF_NORMED else 4 rect = cv2.rectangle(target_image.copy(), tuple(location[::-1]), (location[0] + template_images[i].shape[1], location[1] + template_images[i].shape[0]), match_color, match_thickness) plt.imshow(cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)) plt.show() ``` 以上就是使用OpenCV Python进行多模板匹配的基本步骤。这个过程可以适应各种场景,通过调整阈值、选择不同的匹配方法等参数来优化结果以满足不同复杂度的图像识别任务需求。 在实际应用中可能还需要考虑性能优化等问题,这通常涉及更高级的技术如滑动窗口技术或并行计算等。multiple-template-matching项目可能会包含这些高级应用场景的例子,可以深入研究这个项目的源代码获取更多信息。
  • SAD_SSD+NCC算法在立体中的应用.rar_seldomerq_立体算法_SSD+SAD+NCC
    优质
    本资源探讨了将SSD、SAD和NCC三种算法结合应用于立体匹配问题的方法,旨在通过综合运用多种特征提取技术来提升匹配精度与效率。 立体匹配是计算机视觉领域中的一个重要问题,涉及到SSD(Sum of Squared Differences)、SAD(Sum of Absolute Differences)以及NCC(Normalized Cross-Correlation)等多种算法的应用。这些方法用于计算图像中像素对之间的相似度,从而实现深度信息的提取和三维场景重建。
  • RANSAC算法及图像_ransac.rar_matlab实现
    优质
    本资源提供基于MATLAB实现的RANSAC算法及其在多视角图像匹配中的应用示例,包含源代码和文档说明。适合计算机视觉与图像处理领域的学习研究。 RANSAC算法能够实现数据拟合,并可用于多视角图像匹配等功能。