Advertisement

关于多相交错双向Buck-Boost变换器的探讨

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文深入探讨了多相交错双向Buck-Boost变换器的工作原理、性能优化及应用前景,为电力电子领域的研究提供新的视角。 在储能锂电池充放电模块的研究过程中,为提高电力电子变换器的容量并改善其输出特性问题,我们提出了一种多相交错双向Buck-Boost变换器。该变换器将六个同步双向Buck-Boost电路经过移相处理后交错并联使用,使输出电流成为六相电流叠加的结果。由于各相电路产生的电流脉动相互抵消,总输出电流的纹波变得非常小。 通过仿真和实验对比单相与多相变换器的输出波形及数据,研究结果显示:该变换器能够有效减小输出电流纹波、降低器件损耗,并提高输送效率;同时有利于减少元器件尺寸并提升电池模组的空间利用率。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Buck-Boost
    优质
    本文深入探讨了多相交错双向Buck-Boost变换器的工作原理、性能优化及应用前景,为电力电子领域的研究提供新的视角。 在储能锂电池充放电模块的研究过程中,为提高电力电子变换器的容量并改善其输出特性问题,我们提出了一种多相交错双向Buck-Boost变换器。该变换器将六个同步双向Buck-Boost电路经过移相处理后交错并联使用,使输出电流成为六相电流叠加的结果。由于各相电路产生的电流脉动相互抵消,总输出电流的纹波变得非常小。 通过仿真和实验对比单相与多相变换器的输出波形及数据,研究结果显示:该变换器能够有效减小输出电流纹波、降低器件损耗,并提高输送效率;同时有利于减少元器件尺寸并提升电池模组的空间利用率。
  • 四开Buck-BoostBoost, 切型)_buck boost
    优质
    本项目介绍了一种四开关Buck-Boost变换器的设计与实现,该变换器基于双向Boost电路,并采用切换控制方式。 一种新颖的拓扑结构——四开关BUCK-BOOST变换器,能够实现双向的BUCK功能和BOOST功能,并且可以根据需要自动切换BUCK和BOOST模式。
  • Buck-Boost_BDC__pi_matlab_buck_Buck-Boost__
    优质
    本项目专注于研究和设计Buck-Boost及双向DC-DC(BDC)变换器,采用pi控制器结合MATLAB进行仿真分析。通过优化控制策略,旨在提升电力电子系统的效率与稳定性。 Simulink Buck_Boost双向变换器仿真模型采用单闭环PI控制。
  • Buck-Boost研究.pdf
    优质
    本文档探讨了Buck-Boost双向变流器的工作原理及其在电力电子领域的应用,分析了其设计优化和控制策略,并评估了该技术在可再生能源系统中的潜力。 关于buck-boost双向变换器的研究的PDF文档探讨了这种电力电子设备的工作原理、应用范围以及优化设计方法。该研究对于理解高效能量转换技术具有重要意义。
  • 并联Boost PFC控制策略
    优质
    本文深入分析了交错并联Boost功率因数校正(PFC)变换器的工作原理,并详细探讨了几种有效的控制策略,旨在提高效率和稳定性。 针对交错并联Boost功率因数校正(PFC)变换器在电流临界模式(Critical Conduction Mode, CRM)下存在的过零检测复杂及输入电流波形畸变问题,本段落提出了一种创新的控制方法。该方法利用新型开关管电压检测电路,通过监测MOS管漏源电压,并经过比较器获得过零信号,实现了开关管的零电压开通或谷底开通,显著降低了开关损耗。此外,采用导通时间补偿策略来提高电感电流平均值,从而改善了由电感和MOS管寄生电容谐振引起的输入电流波形畸变现象。最后,设计并搭建了一台800 W的样机进行实验验证,结果证明该方法的有效性和可行性。
  • BUCK-BOOST电流图及PCB
    优质
    本项目专注于BUCK-BOOST双向DC-DC转换器的设计与分析,通过详细绘制电流波形图和设计优化的PCB布局,旨在提升电路效率与稳定性。 BUCK-BOOST双向变换器在电力电子领域被广泛应用,它具有升压和降压的双重功能,并可根据负载需求调整输出电压,在电池供电系统、太阳能发电系统以及需要灵活电压输出的各种场合中发挥重要作用。 我们来详细了解一下BUCK-BOOST变换器的工作原理。当处于降压模式(BUCK)时,通过开关器件(通常是MOSFET)断续导通使电感储能并在负载上释放,从而降低输出电压;而在升压模式(BOOST)下,则是连续导通的开关器件令电感在输入电源侧储存能量,并在输出侧释放,使得输出电压高于输入电压。通过精确控制这些开关器件的占空比来实现所需的电压转换。 电路设计中,BUCK-BOOST变换器通常包括以下几个主要部分:如MOSFET这样的开关元件、电感、用于稳定负载和电源端口的电容、控制器以及反馈电路。控制器根据输出电压的变化调整开关元件的工作状态以保持稳定的输出电压;而反馈电路则由分压电阻网络构成,将一部分输出电压回馈给控制器进行闭环控制。 在PCB设计中,良好的布局能够保证信号准确传递并减少电磁干扰,提高系统的效率和稳定性。这需要考虑:高电流路径尽可能短小、降低线路的电阻与功率损耗;关键元器件如开关管和电感应远离敏感电路以减少耦合;合理安排地线形成低阻抗回路从而减小噪声影响;充分关注散热设计确保元件不会过热。 学习手册通常涵盖BUCK-BOOST变换器的基本理论、工作模式分析及控制策略,同时提供PCB设计指导与元器件选择计算方法等信息。这些资料对于理解和应用这种转换器非常有帮助。 实际应用中,需要根据输入和输出电压范围、最大负载电流以及效率要求等因素来选择适当的BUCK-BOOST变换器,并且要注意其保护功能如过压或短路保护的设计以确保系统的安全运行。 总之,作为一种高效灵活的电源解决方案,BUCK-BOOST双向变换器被广泛应用于各种电力系统。通过深入了解它的原理和设计方法可以更好地在实际项目中应用这种转换器来提供稳定的电压输出。
  • 零电流Buck-BoostDC-DC研究.rar
    优质
    本研究探讨了零电流模式下的Buck-Boost双向DC-DC变换器的工作原理及性能优化,旨在提高电力电子系统的效率与可靠性。 本段落研究了一种零电流Buck/Boost双向DC/DC变换器,针对中大功率双向DC/DC变换器软开关难以实现的问题,基于耦合电感设计了一种无源低损的软开关方案,实现了开关管在零电流条件下开通并回馈缓冲能量。详细分析了该变换器的工作原理,并设计了主要元件参数,推导出主要开关器件的开通损耗估算表达式。实验结果显示,这种零电流开通效果良好,且缓冲电感能量回收明显,在60 kW功率范围内效率超过90%。
  • Simulink三通道并联Buck-Boost电压控制研究
    优质
    本研究采用Simulink工具,探讨了三通道交错并联双向Buck-Boost变换器的电压控制策略,优化其性能和效率。 通过Simulink搭建的三通道交错并联双向buck-boost变换器采用电压外环、三个电流内环以及载波移相120°的控制策略。在Buck模式与Boost模式切换过程中,该系统能够避免过压和过流现象,并实现能量的双向流动。 此外,这种拓扑结构通过减少电感电流纹波并减小每相电感体积来提高电路响应速度。因此,在储能系统中可以应用此变换器。 整个仿真过程完全离散化处理,并使用了离散解析器;主电路和控制部分以不同的步长运行,使模型更接近实际情况。值得注意的是,所有控制与采样环节均为手工搭建,未采用Matlab自带的模块。
  • Simulink三通道并联Buck-Boost电压控制研究
    优质
    本研究聚焦于采用Simulink平台对三通道交错并联双向Buck-Boost变换器进行电压控制策略的研究与仿真分析,旨在提升系统的动态响应和效率。 通过Simulink搭建的三通道交错并联双向buck-boost变换器采用电压外环与三个电流内环,并使用120°载波移相控制方式。在该变换器中,从Buck模式切换到Boost模式时不会出现过压或过流现象,从而保证了能量可以双向流动。 此外,交错并联的拓扑结构有助于减少电感电流纹波、减小每相电感体积,并提高电路响应速度。这种设计适用于储能系统中的应用需求。 整个仿真过程完全离散化处理,使用的是离散解析器,主电路和控制部分以不同的步长运行,更接近实际操作环境。同时,在构建过程中所有控制与采样环节均自行搭建完成,未采用Matlab自带的模块进行辅助设计。
  • Bi-Buck-Boost电路DC-DC
    优质
    本研究提出了一种基于Bi-Buck-Boost电路设计的双向DC-DC变换器,能够高效实现能量在两个不同电压等级之间的灵活传输与转换。 双向DC-DC变换器采用Bi Buck Boost 电路,并使用电压电流双闭环控制策略。其中电流环采用了峰值电流控制方法。该设计是在MATLAB2018b版本中实现的。