Advertisement

高速电路设计与仿真的更新:Cadence实例详解及《信号电源完整性仿真分析与实践》.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源深入讲解了利用Cadence工具进行高速电路设计与仿真的最新方法和技术,结合实际案例剖析信号和电源完整性的仿真技巧。 电路设计,尤其是现代高速电路系统的设计,在电子技术的发展推动下不断进步,既充满趣味又极具挑战性。《高速电路设计与仿真分析:Cadence实例设计详解》这本书旨在帮助电子系统设计工程师掌握高效的方法和技术,以应对行业发展的需求。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿Cadence仿》.zip
    优质
    本资源深入讲解了利用Cadence工具进行高速电路设计与仿真的最新方法和技术,结合实际案例剖析信号和电源完整性的仿真技巧。 电路设计,尤其是现代高速电路系统的设计,在电子技术的发展推动下不断进步,既充满趣味又极具挑战性。《高速电路设计与仿真分析:Cadence实例设计详解》这本书旨在帮助电子系统设计工程师掌握高效的方法和技术,以应对行业发展的需求。
  • Cadence仿
    优质
    本案例分析深入探讨了使用Cadence工具进行电源完整性的仿真技术,涵盖设计优化、信号干扰解决及电压降分析等多个方面,旨在提升IC设计的质量和可靠性。 Cadence电源完整性仿真的实例展示了如何使用该软件进行高效准确的电源网络分析与优化。通过这些示例,用户可以更好地理解在设计过程中如何确保芯片的供电稳定性及降低功耗,从而提升整体性能。
  • 仿在基础子学中
    优质
    本文章探讨了高速电路中的信号完整性问题,并介绍了基于基础电子学原理的仿真分析方法。通过深入研究和实例演示,为解决复杂设计挑战提供了有效途径。 在电子工程领域内,高速电路设计中的信号完整性问题变得日益关键。随着设备速度的不断提升,解决这些问题需要依赖多种仿真技术来预测并处理相关挑战。 本段落将重点讨论用于分析高速电路信号完整性的三种主要方法:电磁仿真、电路仿真和行为仿真。 首先,电磁仿真是基于经典麦克斯韦方程组的一种直接模拟方式,这套物理定律描述了电场与磁场在空间中的变化规律。麦克斯韦方程既可以通过时域也可以通过频域来表达;前者对于瞬态现象的分析特别有用,而后者则适用于稳态或频率响应问题的研究。 现实中求解这些复杂的数学模型通常依赖于专业的电磁仿真软件,比如Ansoft公司的HFSS、CTS、XFDTD和ADS等。这类工具能够高效地处理复杂计算,并帮助工程师预测信号传播与反射情况,以及可能的干扰与噪声源。 尽管电磁仿真在理论层面提供了详尽的信息,但在面对复杂的多层PCB或封装设计时仍会遇到挑战,不仅需要巨大的计算资源支持,还要求使用者具备深厚的电磁学知识和软件操作能力。对于简单结构而言,这种仿真方法能够提供精准的结果;但对于复杂的设计环境,则可能不够实用。 另一方面,电路仿真的主要关注点在于电压、电流等电参数,并且将实际的电子元件简化为电阻、电容或电感等基本单元进行分析。这种方法在处理串扰、传输线效应和开关噪声等问题时表现良好,计算速度快,适合早期设计阶段及快速迭代过程中的问题排查工作。 然而电路仿真忽略了电磁场的具体细节,因此不能准确模拟复杂的电磁耦合与辐射现象,在高速信号的精确分析方面存在一定的局限性。 行为仿真是介于电磁仿真和电路仿真之间的一种方法。它基于特定应用领域的数学模型(例如传递函数或查找表),适用于数字信号处理等场景,并能够快速预测信号的行为特征,但其适用范围较窄且仅限于预定义条件下的模拟结果。 总的来说,在高速电路设计中应对信号完整性的挑战时,工程师通常会综合运用上述三种仿真技术。电磁仿真是最为全面的解决方案,尽管计算成本较高;电路仿真则因其速度和实用性而适合初步设计阶段的问题解决;行为仿真在特定场景下提供了快速且有效的预测手段。通过这些工具的有效结合与应用,可以更高效地优化高速电路的设计,并确保信号传输的质量与可靠性。
  • .pdf
    优质
    本PDF文档深入探讨了高速电路设计中信号完整性的关键问题,提供了详尽的理论解析和实用的设计指导,帮助工程师解决复杂的技术挑战。 《信号完整性分析及设计-高速电路设计》是中国电子学会培训课件,共346页。内容言简意赅,全面清晰,值得学习。
  • 基于HyperLynx 90仿资料包.rar
    优质
    本资源包含利用HyperLynx 9.0软件进行信号和电源完整性的仿真实例与相关资料,适用于电子设计工程师深入学习和实践。 本书以HyperLynx 9.0软件为基础,并通过具体的电路实例系统地讲解了信号完整性和电源完整性仿真的全过程。书中不仅涵盖了信号和电源完整性设计的基础知识,还详细介绍了如何使用HyperLynx 9.0进行仿真分析的操作流程。此外,为了便于学习者更好地掌握相关技能,本书附带提供了课程练习的资料包。
  • Simplis开关仿:多相Buck仿D-CAP+架构
    优质
    本书深入浅出地讲解了使用Simplis进行开关电源设计的技巧,重点介绍了多相Buck电路仿真和D-CAP+架构的实际应用案例。适合电源设计师参考学习。 本段落档详细介绍了使用Simplis软件进行开关电源及电路仿真的案例研究,特别聚焦于多相控制Buck电路的仿真与D-CAP+架构的实际应用解析。 文中具体分析了4至8相连续导通模式(COT)下的D-CAP+结构和1至8相脉宽调制(PWM)Buck仿真模型。此外,还探讨了峰值电流模式、D-CAP3模式等不同工作方式,并提供了可调整参数及二次开发的可能性。 该文档涵盖了多种实用功能的实现方法,如负载线特性曲线(Loadline)、零交叉检测(ZCD)、瞬态电压调节器(TLVR)以及软启动机制(softstart),为深入理解和优化开关电源设计提供支持。
  • Protel99SE仿——基于仿教学
    优质
    《Protel99SE实验设计与仿真》一书聚焦于利用Protel99SE软件进行电路设计和仿真的实践应用,为读者提供丰富的实验指导和案例分析。 这段文字介绍的是关于Protel99SE实验设计与仿真的PPT格式内容,涵盖了电路仿真实验的各个方面,并且非常全面详细。
  • Cadence仿
    优质
    《Cadence电路仿真设计》是一本专注于使用Cadence软件进行电子电路设计与仿真的技术书籍,详细介绍了电路原理图输入、PCB布局布线以及信号完整性分析等关键技术环节。适合电子工程专业学生和相关领域工程师参考学习。 在电子设计领域内,Cadence是一款广泛应用的工具,在电路设计与仿真方面尤为突出。PSPICE(Professional SPICE)是Cadence旗下的强大电路模拟软件之一,它让工程师能够在实际制造之前对复杂的电子系统进行精确性能预测。本教程主要关注使用Cadence PSPICE进行PWM(脉宽调制)电源仿真的实例分析,在电源管理和控制电路设计中具有重要意义。 PWM电源技术是一种高效的电力转换方法,通过调整输出脉冲宽度来调节平均功率水平,广泛应用于开关电源、电机驱动器和LED照明等领域。在Cadence PSPICE环境中对PWM电源进行仿真能够帮助设计师评估其效率、纹波大小、稳定性和动态响应等关键性能指标。 首先需要掌握PWM电源的基本原理:PWM信号由高电平和低电平组成的周期性脉冲序列构成,占空比决定了输出电压的平均值。在Cadence PSPICE中可以创建一个PWM发生器模型,通常采用比较器与定时器电路实现所需的PWM波形生成。 接下来将此PWM信号应用于电源转换器如Boost、Buck或Buck-Boost变换器等设备,在Cadence PSPICE环境中以电路图形式构建这些转换器的拓扑结构。仿真过程中需设置合适的参数值,例如时间步长和仿真时间范围,确保最终结果准确无误。 在进行PWM电源仿真的同时主要关注以下几个方面: 1. **效率分析**:计算输入功率与输出功率比率来评估电源转换效率。 2. **纹波分析**:观察并记录输出电压波动情况,从而判断系统的稳定性水平。 3. **瞬态响应**:当负载或输入电压变化时,考察电源调整输出电压的速度和能力。 4. **环路稳定性**:对于包含负反馈系统的情况,需要分析闭环增益与相位特性以确保其在各种工作条件下均能保持稳定状态。 具有反馈机制的PWM电源仿真更为复杂。在这种情况下,反馈回路由根据输出电压变化来调整PWM信号占空比,从而维持恒定输出电压水平。使用Cadence PSPICE时可以通过设置传递函数或进行频率域分析等方法评估此类闭环系统的性能表现。 此外对于高级用户来说还可以利用PSPICE的更多功能如非线性器件建模、温度依赖性分析及噪声特性研究等手段来获取更加全面和深入的研究成果。通过在Cadence PSPICE环境下开展PWM电源仿真工作,工程师能够优化设计方案,并减少实物原型制造环节所耗的时间与成本投入,进而提升产品开发的成功率。
  • Multisim仿
    优质
    《高频电路实验与Multisim仿真分析》是一本结合理论与实践的教程,通过详细的实验指导和使用Multisim软件进行仿真的方法,帮助读者深入理解高频电路的设计、测试及优化过程。 高频电路在无线通信领域扮演着至关重要的角色,它涉及到信号的放大、调制与检波等一系列复杂过程。对于电子工程专业的学生而言,高频电路实验及Multisim仿真是他们掌握高频电子技术的关键实践环节。作为一款功能强大的电路仿真软件,Multisim允许学生在虚拟环境中设计、分析和优化高频电路,为理论知识与实际操作相结合的学习提供了便利条件。 实验一中的高频小信号放大器的设计是学习高频电子技术的基础内容之一。在这个过程中,学生需要首先根据选频网络确定工作点,并计算谐振频率ωp。该频率由电感(L)和电容(C)的值决定,其公式为ωp = 1 / (2π√LC),这一步骤对于电路的整体性能至关重要。此外,在实验中,放大器的电压增益Av0(输出电压与输入电压之比)是评估放大器性能的关键参数之一。学生需根据具体数值计算Av0,并具备扎实的数据处理能力。 通过使用波特图仪进行分析,学生可以进一步了解电路频率响应特性以及矩形系数值,从而更好地评价放大器的选择性和带宽。改变信号源的频率后,测量输出电压振幅并绘制出频率与增益的关系曲线是理解通频带和频率响应特性的直观方法之一。 高频功率放大器的设计则是实验二的重点内容。其目标是在保持良好选择性的同时高效地放大信号。在实际操作中,学生需要使用BJT_NPN_VIRTUAL晶体管进行瞬态分析以研究集电极电流ic的变化情况,并通过调整输入信号幅度和基极反向偏置电压来优化选频能力。此外,输出功率的计算也是评估放大器性能的重要指标之一。 这些实验不仅加深了学生对高频电路工作原理的理解,还锻炼了他们在实际工程应用中的关键参数分析与性能评价技能。整个过程涵盖了谐振特性、增益计算和频率响应分析等多个方面,并在无线电通信、射频识别技术及卫星通讯等领域有着广泛的应用前景。 教师可以利用Multisim仿真软件的优势来设计各种实验场景,使学生能够在安全的虚拟环境中进行多次尝试并观察结果变化,从而找到最佳的设计方案。这种实践教学方式有助于激发学生的创新意识和解决问题的能力。 总而言之,高频电路实验与Multisim仿真是电子工程专业课程中的重要组成部分之一,它不仅帮助学生理解复杂系统的运行机制、掌握电路设计的关键技术,并为他们将来从事相关领域的研究及开发工作奠定了坚实的基础。