Advertisement

下肢康复外骨骼机器人的动力学分析与仿真.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文针对下肢康复外骨骼机器人进行动力学建模与分析,并通过仿真验证其性能,为设计更有效的康复设备提供理论依据。 #资源达人分享计划# 该计划旨在为参与者提供丰富的学习资源与经验分享,鼓励大家相互交流、共同成长。参与其中的达人们将定期发布各类实用资料,并通过互动讨论帮助他人解决问题,提升技能水平。 (注:此处未包含原文中可能存在的具体联系方式和链接信息)

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿.pdf
    优质
    本文针对下肢康复外骨骼机器人进行动力学建模与分析,并通过仿真验证其性能,为设计更有效的康复设备提供理论依据。 #资源达人分享计划# 该计划旨在为参与者提供丰富的学习资源与经验分享,鼓励大家相互交流、共同成长。参与其中的达人们将定期发布各类实用资料,并通过互动讨论帮助他人解决问题,提升技能水平。 (注:此处未包含原文中可能存在的具体联系方式和链接信息)
  • 2016年仿
    优质
    本文主要探讨了在2016年对人体下肢外骨骼康复机器人的仿真研究和分析,旨在提升该类设备的功能性和适用性。 我们设计了一种用于辅助老年人和患者的电机驱动型服务机器人——人体下肢外骨骼康复机器人。通过建立行走姿态下的D-H数学模型,推导出了髋关节、膝关节及踝关节在不同姿势中的坐标方程。我们在ADAMS环境下进行了人机耦合仿真,结果表明:下肢外骨骼各关节具有连续的运动轨迹,并满足各个关节所需的可达性要求,符合人体下肢的实际运动特性。 我们搭建了一个试验平台来测试样机性能,测量了三个关节角度随时间的变化曲线,验证了该装置的运动轨迹。实验中获得的数据与仿真结果基本一致。
  • 控制研究
    优质
    本研究专注于探索和开发用于辅助下肢功能恢复的外骨骼技术,通过精密的运动控制算法优化患者的康复训练效果。 本段落基于动力下肢外骨骼机器人,研究用于助老、助残的下肢外骨骼机器人的运动控制策略,并通过实验验证所提出的控制方法的有效性。
  • 行走控制系统設計
    优质
    本研究旨在设计一种先进的控制系统,用于下肢外骨骼康复机器人,以提高患者的行走能力和康复效率。 下肢外骨骼康复行走机器人控制系统设计介绍了该系统的方案及设计理念。
  • 及轨迹控制实现
    优质
    本研究聚焦于下肢外骨骼机器人,深入探讨其运动学特性,并提出一种有效的轨迹控制策略,以提升设备性能和用户体验。 本段落介绍了一种基于智能工程的下肢外骨骼机器人,并通过运动学分析与轨迹控制实现了对该机器人的操控。研究团队采用了运动学分析方法来探讨机器人的运动特性,并设计出一种利用PID控制器进行轨迹调控的算法,从而成功地对机器人进行了操作控制。这项研究表明了在下肢外骨骼机器人领域中提供了一种新的思考方向和实现方案。
  • 自适应控制方案
    优质
    本文提出了一种创新的人体下肢外骨骼机器人自适应控制系统,能够实时调整参数以优化穿戴者的行走体验和辅助效果。该系统结合了先进的传感器技术和智能算法,旨在提高运动的自然性和安全性,适用于康复医疗及增强人体机能等多领域应用。 外骨骼机器人辅助物理治疗因其在康复过程中的各个阶段都能提供有效物理疗法而备受关注。这种治疗方法的效果很大程度上取决于机器人的操作性能。由于机器人动力学的非线性特性,通常会采用近似模型来设计控制算法,这可能导致系统不稳定和跟踪误差的问题。准确地确定外骨骼机器人的负载(包括人体肢体的质量和惯性特征)通常是不现实的。自适应控制系统能够有效地处理这些建模误差。 本段落利用牛顿-欧拉法建立了7自由度的人体下肢动力学模型,并引入了一个实际摩擦模型来模拟关节摩擦。设计了一种直接自适应控制器,以使机器人能快速且准确地跟踪预定轨迹。该方案考虑了31个模型参数进行自适应调整,并通过李雅普诺夫稳定性方法确定控制系统的增益值,确保系统稳定运行。仿真结果显示,在存在关节摩擦的情况下,所开发的控制器具有良好的追踪性能。
  • 关于基于ROS控制系统探讨_毕业论文.pdf
    优质
    本文档为一篇学术论文,主要讨论了基于ROS(Robot Operating System)的上肢外骨骼康复机器人的控制系统设计与实现。通过分析现有技术问题并提出改进方案,旨在提升康复治疗的效果和用户体验。文档详细介绍了系统架构、关键技术及其应用前景。 本研究致力于设计并实现一种基于ROS的上肢外骨骼康复机器人的控制系统,旨在提升患者的康复训练效果。该系统能够实时获取机器人运动状态,并对康复动作进行规划与再现,同时记录及分析运行结果。为了应对机器人在操作过程中的非重复干扰问题,引入了自适应迭代学习控制算法以优化其轨迹追踪性能。 研究的主要内容包括: 1. 分析国内外上肢外骨骼康复机器人的最新研究成果和发展趋势,明确该类设备的需求和技术特点。 2. 确定各关节的运动规律,并验证所设计机器人结构的有效性。 3. 利用改进后的DH建模方法进行正逆向动力学分析和工作空间计算,并通过Matlab软件进行了结果验证。 4. 深入探讨ROS系统的架构、通信机制(话题和服务)、Rviz及Gazebo可视化工具以及运动规划核心Moveit!的功能与应用。 5. 完成基于ROS的康复机器人控制系统的设计,同时利用Solidworks中的sw2urdf功能创建了机器人的URDF描述文件。 6. 开发了一种包含鲁棒控制项的自适应迭代学习控制器设计方法,并进行了相关研究。 7. 实现了ROS系统与Matlab之间的联合仿真测试。 研究表明:所开发的控制系统能够准确执行康复训练任务,且可通过Matlab对机器人模型进行实时操控。这为基于Matlab算法在ROS环境中验证提供了可能的基础条件。 涉及的关键技术包括: - ROS系统的架构、通信机制(话题和服务)、Rviz及Gazebo可视化工具以及运动规划核心Moveit! - DH建模方法和正逆向动力学分析 - 自适应迭代学习控制策略与鲁棒性增强项的设计 - Matlab与ROS的联合仿真技术 - 康复机器人控制系统软件设计流程 - 上肢外骨骼康复机器人的需求和技术特征识别 - 各关节运动规律的研究及结构验证方法 - Solidworks中的sw2urdf功能和URDF描述文件生成过程 - Moveit!配置及其在机器人模型上的应用实例 - Rviz与Gazebo中轨迹规划的控制技术实施 - Lyapunov稳定性判据的应用以及收敛性分析
  • 绳驱关节设计.pdf
    优质
    本文针对上肢康复机器人的需求,详细探讨了绳驱动关节的设计和性能分析。通过优化结构设计和动力传输方式,旨在提高康复训练的效果及用户体验。 上肢康复机器人在医疗康复领域扮演着重要角色,能够帮助因疾病、伤痛或手术等原因导致上肢功能受损的患者进行恢复训练。传统康复机器人多采用刚性动力传递方式,但这些系统存在易于滑动及误差累积等问题。本研究提出了一种使用钢丝绳和齿形带的方式将传统的刚性驱动转变为柔性驱动来解决这些问题。 ### 钢丝绳与齿形带的驱动方法 研究中采用了“钢丝绳+齿形带”的方式,利用了钢丝绳高强度、体积小以及耐久性强的特点,在紧凑空间内使用。同时,齿形带有准确的速度转换和动力传递的能力。通过将刚性系统转变成柔性系统可以减少复杂性和降低由于刚性带来的误差累积问题。 ### 摩擦力补偿法 为了分析钢丝绳在康复机器人中的特性,研究中采用了摩擦力补偿方法来计算钢丝绳与外部软管之间的摩擦系数。这种方法旨在找出钢丝绳的摩擦力和负载之间关系,有助于优化驱动系统的性能并保持动力传递准确性。 ### 钢丝绳的选择及测试 选择适当的钢丝绳对于设计上肢康复机器人至关重要。研究者通过在不同弯曲度下对各种组合进行测试来确定合适的型号。试验中使用的304不锈钢材质的钢丝绳直径为1.5mm,最大承重能力达到25kg,提供了重要的实验数据。 ### 仿真分析 为了验证理论分析的正确性,研究人员利用ADAMS软件(一种广泛应用于机械系统动力学仿真的工具)对关节中的钢丝绳进行模拟。结果显示钢丝绳的摩擦力与长度和负载大小成正比,并且弯曲程度对其影响可以忽略不计。 ### 结论验证 实验及仿真分析表明,在最大紧边压力为8N的情况下,实际测得的摩擦力约为7.6N。这些结论不仅证明了所提广义驱动方式的有效性,也为上肢康复机器人绳传动关节的设计提供了理论和实践依据。 - 上肢康复机器人:一种帮助因疾病、伤痛或手术导致上肢功能受损患者恢复肌肉力量及运动能力的医疗辅助设备。 - 绳传动系统:利用钢丝绳及相关装置传递动力或动作的机制。 - 钢丝绳:由多股高强度钢线捻合而成,具有高抗拉强度和韧性,在重机械、提升设备等领域广泛应用。 - 摩擦力补偿法:通过实验数据计算并调整摩擦系数的方法,确保动力传输精度。 - ADAMS仿真:一种用于预测复杂机械系统在各种条件下的动态反应的动力学模拟工具。 文章发表于2018年9月的《江苏大学学报(自然科学版)》第39卷第5期,编号为1671-7775(2018)05-0563-07。文献分类号是TH122,标志码为A。引用格式如下:杨启志, 孙梦涛, 马新坡等.上肢康复机器人绳驱动关节的设计与分析[J].江苏大学学报(自然科学版), 2018, 39(5): 563-569.
  • 绳驱关节设计.pdf
    优质
    本文探讨了针对上肢康复机器人的绳驱动关节的设计及性能分析,旨在提高患者康复治疗的效果和舒适度。 上肢康复机器人是医疗领域的重要工具,用于帮助因疾病、伤痛或手术等原因导致上肢功能受损的患者进行康复训练。传统康复机器人的动力传递多采用刚性方式,但这类系统存在滑动易发及误差累积等问题。本研究提出了一种使用钢丝绳和齿形带的方法来替代传统的刚性动力传递,旨在解决这些问题。 ### 钢丝绳与齿形带驱动方式 该研究中提出了“钢丝绳+齿形带”的驱动方案。这种方法利用了钢丝绳高强度、小体积及高耐久性的特点,并结合齿形带提供的准确线速度转换和动力传输能力,从而将刚性系统转化为柔性系统,减少复杂性和误差累积。 ### 摩擦力补偿法 为了分析钢丝绳在康复机器人中的工作特性,研究使用了摩擦力补偿方法来计算其与外部软管之间的摩擦因数。这种方法有助于优化驱动系统的性能并确保动力传递的准确性。 ### 钢丝绳的选择与测试 研究中对不同弯曲度下的钢丝绳和绳套组合进行了详细的测试,并根据结果选择了304不锈钢材质、直径1.5mm且能承受最大25kg重量的钢丝绳。这些参数为上肢康复机器人的设计提供了重要的实验数据。 ### 仿真分析 为了验证理论分析,研究人员使用了ADAMS软件对驱动关节中的钢丝绳进行了仿真研究。结果显示,钢丝绳的摩擦力与其长度和负载大小成正比关系,并且弯曲程度对其影响可以忽略不计。 ### 结论验证 通过一系列实验与仿真实验,得出最大紧边压力为8N、实际摩擦力为7.6N的结果。这些结论不仅证明了广义驱动方式的有效性,还为上肢康复机器人的设计提供了理论依据和实践基础。 文章发表于2018年9月的《江苏大学学报(自然科学版)》第39卷第5期中,并被赋予了特定的文章编号、分类号及标志码。该研究聚焦于绳驱动关节的设计与分析,对于上肢康复机器人的改进和发展具有重要意义。 以上内容是对“上肢康复机器人绳驱动关节的设计与分析.pdf”文件中的核心知识点和研究成果的详细解读。
  • 技术论文研究
    优质
    本文对外骨骼机器人技术进行了全面分析和探讨,涵盖其设计原理、应用领域及未来发展趋势。通过深入解析关键技术挑战与解决方案,旨在推动该领域的创新与发展。 最近由于机器人技术的进步以及如何使机器人直接与人体接触的需求增加,对外骨骼机器人的需求也发生了变化。这些曾经只在工厂使用的外骨骼机器人现在已成为人体的一部分,提供了前所未有的肌肉力量提升和跑步速度提高的能力。如果使用得当,它们也可以用于病人的康复治疗。 外骨骼机器人具有多种潜在的应用领域,并且最先进的国家正在开发各种类型的这种设备。根据其设计特点,可以将这些机器人分为两大类:刚性型与软型。每种类型都有各自的优点及缺点,在承载能力和致动速度方面也有所不同。 然而,在现场使用外骨骼机器人的过程中仍存在许多技术难题需要解决。因此,本研究旨在介绍发达国家中有关于外骨骼机器人的发展趋势,并分析这些机器人在技术和应用方面的优劣之处。通过比较表可以看出未来的技术发展方向,例如采用先进的传感器和人工智能来提高机器人的响应特性。 随着科技的进步,可穿戴的机器人将变得越来越智能、轻便且强大。可以预见的是,在不久的将来,这类设备将成为人类生活的一部分。