Advertisement

步进电机的速度测量与闭环调节

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了步进电机速度测量的方法及其在闭环控制系统中的应用,旨在提高系统的稳定性和精度。 本设计以AT89C52单片机为核心,采用4×4矩阵键盘作为输入设备,并使用光电对射式传感器进行测速,实现了步进电机的测速与调速功能,满足了设计的基本要求。在设计过程中,通过1602液晶显示屏来显示输入和输出转速。系统通过对光电传感器返回的脉冲数进行处理计算当前转速并送至1602液晶屏显示,并将其作为反馈信号与用户设定的目标转速一起进行PID控制运算以调整电机各相频率,从而实现对步进电机的速度调节,最终使实际输出速度稳定在目标值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文探讨了步进电机速度测量的方法及其在闭环控制系统中的应用,旨在提高系统的稳定性和精度。 本设计以AT89C52单片机为核心,采用4×4矩阵键盘作为输入设备,并使用光电对射式传感器进行测速,实现了步进电机的测速与调速功能,满足了设计的基本要求。在设计过程中,通过1602液晶显示屏来显示输入和输出转速。系统通过对光电传感器返回的脉冲数进行处理计算当前转速并送至1602液晶屏显示,并将其作为反馈信号与用户设定的目标转速一起进行PID控制运算以调整电机各相频率,从而实现对步进电机的速度调节,最终使实际输出速度稳定在目标值。
  • 基于PIDSTM32F407
    优质
    本项目采用STM32F407微控制器,通过PID控制算法实现对步进电机的速度精确调节。旨在优化步进电机在不同负载下的响应性能与稳定性。 这是一个不错的PID速度环步进电机调速例程,完全开源,并包含详细的程序备注供学习下载。此外还有文档解析说明,基于STM32F407 HAL库。
  • PID控制.rar
    优质
    本资源提供了一种基于PID算法实现步进电机速度闭环控制的方法和相关代码,适用于自动化控制系统的设计与研究。 步进电机通常容易出现丢步(失步)的问题,即虽然开发板发送了100个脉冲到驱动器,但实际的步进电机只移动了99步或甚至过量至101步。为解决这一问题,可以采用加减速算法来避免速度突变,或者使用编码器检测步进电机的实际位置。安装编码器后,可以通过闭环控制精确地跟踪和纠正步数偏差,并同时监测电动机的速度,利用PID算法进行精准的速度调节。
  • 直流系统
    优质
    单闭环直流电机速度调节系统是一种通过反馈控制机制来调整和稳定直流电动机转速的控制系统。该系统能够有效应对负载变化,确保电机在各种工况下都能保持设定的速度运行。 单闭环直流电机调速系统设计基于直流转速单闭环脉宽PWM调速原理。该系统主要关注转速的单闭环调节机制。
  • _asynchronous.rar_控制_转_simulink仿真
    优质
    本资源包含异步电机的闭环控制系统设计与转速调节方法,利用Simulink进行仿真分析。适合于电机控制领域的研究和学习。 异步电机在工业应用中的调速技术占据主导地位,在电力驱动系统尤其重要。“asynchronous.rar”压缩包内包含的是双闭环调速系统的Simulink仿真模型,该系统包括电流环与速度环。 异步电机,又称感应电机,其工作原理基于电磁感应。当定子绕组通入三相交流电时形成旋转磁场,在转子绕组中产生感应电流并生成驱动力矩使电机运转。调速方法多样,闭环控制是其中高效且精确的一种方式。 双闭环调速系统由速度环和电流环组成:前者作为外环确保电机转速符合预期值;后者则负责电磁转矩的调控以保持稳定运行状态。两者皆采用PI调节器实现对偏差的有效调整。 在Simulink环境下,我们能够构建并仿真这两个环节的数学模型。“asynchronous.mdl”文件即为此目的设计。通过该工具可以直观展示系统动态响应特性,包括阶跃响应、瞬态过程及稳态性能表现等关键信息。这有助于深入理解和优化控制系统,在负载变化或电源波动情况下分析电机调速效果和调节器反应特征。 电流环旨在迅速应对并抑制电流波动以确保运行稳定性;速度环则通过调整电流输出来达到所需转速水平,从而实现更高级别的控制目标。这种双闭环设计能够提供良好的动态性能与抗干扰能力,使异步电机在各种工况下保持稳定高效运转状态。 结合了电流与速度调控优势的双闭环调速系统是达成高精度高性能电动机调节的关键手段之一。Simulink作为强大的仿真工具帮助我们理解复杂系统的动态行为,并优化控制器参数以提升整体性能表现。深入学习并利用该模型可以掌握异步电机调速的核心理论和技术,为实际工程应用奠定坚实基础。
  • 控制(张大头Emm-V4.2驱动器及STM32)
    优质
    本项目探讨了基于张大头Emm-V4.2驱动器和STM32微控制器的步进电机闭环控制系统的设计,实现精确的速度调节。 步进闭环控制与速度控制(使用张大头Emm_V4.2驱动器)以及基于STM32的速度控制。
  • 直流(P1-P2),永磁同流滞(P3-P4),及流滞SVPWM比较(P5-...)
    优质
    本项目涵盖直流电机和永磁同步电机的调速技术,包括双闭环、电流滞环及SVPWM方法,并对比分析其性能差异。 直流电机双闭环调速(p1-p2) 永磁同步电机电流滞环闭环调速(p3-p4) 永磁同步电机电流滞环与SVPWM调速对比(p5-p6) 异步电机滞环电流调速(p7-p8)
  • 直流控制系统实现.zip_双_双直流_双__
    优质
    本项目介绍了直流电机电流与速度双闭环控制系统的设计与实现方法。通过构建电流和速度两个闭环回路,有效提高了电机的响应速度及稳定性。 直流电机电流和速度双闭环控制系统的PID调节方法。
  • STM32F1和F4PWMPID控制
    优质
    本项目介绍如何使用STM32F1和F4系列微控制器通过PWM信号实现电机调速,并结合PID算法进行速度闭环控制,以达到精准调控的目的。 最近在进行STM32电机驱动的相关工作,并查阅了许多资料同时进行了实际练习。在此分享一些资料,希望能对大家有所帮助。
  • 基于 PI 控制感应 - MATLAB 开发
    优质
    本项目利用MATLAB开发了基于PI控制算法的感应电机闭环速度控制系统,实现了对电机速度的精确调节与稳定控制。 感应电机的v/f调速是一种常用的变频调速方法,通过调整电压与频率的比例来实现对电动机转速的控制。这种方法能够保证在不同速度下电机的工作状态接近恒定磁场,从而使得电机在整个运行范围内都能保持良好的性能和效率。