Advertisement

MC145026/145027组成的红外发射与接收电路图-电子电路图站-电路原理

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PPT


简介:
本文介绍了一种基于MC145026和MC145027芯片构建的红外发射与接收电路的设计,适用于各种遥控及通信应用。通过详细的电路图解析,为读者提供深入理解该系统工作原理的机会,是电子爱好者和技术人员不可多得的学习资源。 红外发射、接收电路图-电子电路图站-电路原理

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MC145026/145027--
    优质
    本文介绍了一种基于MC145026和MC145027芯片构建的红外发射与接收电路的设计,适用于各种遥控及通信应用。通过详细的电路图解析,为读者提供深入理解该系统工作原理的机会,是电子爱好者和技术人员不可多得的学习资源。 红外发射、接收电路图-电子电路图站-电路原理
  • 38kHz
    优质
    本资料提供了一套详细的38kHz红外发射与接收电路设计图纸和相关说明,适用于家电遥控、无线通信等领域。 我画了一张38k红外电路图,并进行了实际测试。发现如果要使用555定时器,则需要调整电阻值。但是我的Protel许可证已经过期无法进行修改。
  • 工作
    优质
    本资源详细解析了红外发射与接收电路的基本工作原理,并提供了清晰的工作原理图,帮助读者理解其在遥控、通讯等领域的应用。 遥控开关包含红外光发射器及红外接收译码器。其中,接收译码电路由红外接收放大器、音频译码电路和声控执行电路构成。
  • 无线PCB
    优质
    本资源包含无线红外发射与接收电路设计的相关资料,包括详细的电路图和原理说明。适用于电子爱好者及工程师学习参考,帮助理解并实践无线通信技术的基础应用。 我自己制作的红外发射接收电路非常好用,希望与大家分享并共同学习。
  • 仿真
    优质
    本项目聚焦于设计和分析红外发射接收电路,通过仿真软件优化电路性能,探究其在通讯、遥控等领域的应用潜力。 红外发射接收电路图及Proteus仿真电路
  • 简易
    优质
    本项目介绍了一种简单的红外发射与接收电路的设计和实现方法,适用于电子爱好者进行远程控制实验。 红外发射和接收电路的介绍包括一个简单的电路图,适合初学者学习使用。
  • Proteus仿真
    优质
    本项目通过Proteus软件仿真环境搭建并测试了红外发射与接收电路的工作原理,详细分析了其在无线通讯中的应用。 使用Proteus模拟外置发射接收,并附有源代码。
  • 制作 20181128
    优质
    本篇文章介绍了一种简单的红外发射与接收电路的制作方法,包括所需元件、电路图以及组装步骤。适合初学者学习和实践使用。发布日期为2018年11月28日。 红外发射和接收电路的制作指南提供了一系列关于如何设计、构建以及调试红外通信系统的详细步骤和技术细节。这个过程涵盖了从基础理论到实际应用的所有方面,旨在帮助读者理解和掌握红外技术的核心原理及其在电子项目中的广泛应用。通过遵循这些指导原则,爱好者与工程师能够开发出高效且可靠的红外发射和接收装置。
  • 遥控装置设计(北线课程设计)
    优质
    本项目为北京理工大学电路与电子线路课程设计作品,专注于开发一种高效能的红外遥控发射与接收系统。通过精心设计硬件电路和编写控制程序,实现了信号的有效传输与解析功能,适用于家庭电器远程操控等应用场景。 设计一个八路红外遥控器电路的任务及主要技术指标如下: 1. 码元速率:400 bit/s。 2. 调制方式:采用幅度键控(ASK),载波频率为40 kHz。
  • 天天读(3):赏析无线充线设计
    优质
    本篇文章为《电路图天天读》系列第三篇,聚焦于解读无线充电技术中发射端和接收端的电子线路设计,深入分析其工作原理及优化方案。适合电子爱好者和技术人员阅读学习。 本段落将深入探讨无线充电技术及其关键组件的设计,包括振荡信号发生器和谐振功率放大器。 在无线充电系统中,振荡信号发生器是核心部分之一,负责生成特定频率的交流电信号。在这个电路设计里,NE555定时器被用来作为产生约510kHz稳定输出信号的振荡源。这款多功能模拟集成电路通过内部比较器和非稳态多谐振荡器提供精确的时间控制功能。 接下来是谐振功率放大器的设计环节,其任务在于将产生的信号增强至足够驱动发射线圈形成强电磁场的程度。此部分由LC并联谐振回路及IRF840开关管构成。具体来说,电感L(142μH)与固定电容680pF和可调电容200pF共同组成LC回路,并决定了系统的谐振频率;而大功率MOSFET IRF840则能够处理高达8A的电流并保持较低内阻,适合于放大电路应用。由于功耗较大,IRF840需配备散热片来避免过热问题。 发射线圈与接收线圈之间的距离影响无线充电效率及范围。当两者均处于谐振状态时,能量传输最为高效:发射端产生的交变电磁场会在接受端感应出电压,并通过全波整流、电容滤波以及稳压二极管的稳定作用转化为稳定的直流电力供设备使用。 在接收电路中,高频交流信号首先由1N4148快速二极管进行全波整流处理;然后利用3300F的大容量电解电容器来平滑电压波动。此外,5.1V稳压二极管保证输出电压的稳定性。为了控制充电时间并确保电流恒定以支持不同速度(比如快充和慢充模式下分别为2.2mA与0.55mA)的操作需求,设计采用了恒流充电策略。 综上所述,在无线充电技术的应用中,对振荡器频率、谐振回路参数以及接收端的充电过程进行精确控制是实现高效且安全能量传输的关键。此系统涉及到了电子振荡、功率放大、谐振电路和电源转换等多个方面,并需要深入理解这些基本原理以便于设计与优化无线充电设备。