Advertisement

LabVIEW生产者与消费者模块.vi

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:VI


简介:
本示例程序展示了如何使用LabVIEW创建一个生产者-消费者模型,通过数据队列实现线程间的高效通信和任务处理。 本段落档描述了一个使用生产者-消费者模式的例程,该例程通过一个大小为30个点的缓冲区连接生产者与消费者,并传递连续的正弦波形数据。右下角设有一个“停止”按钮用于控制程序执行的暂停。 本VI(虚拟仪器)主要功能如下: 1. 实现五种不同的操作状态:不生产,只消费;生成速度快于消费速度;生成速率等于消费速率;生成慢于消费速率以及仅生产、不进行任何消耗。 2. 通过此例程来理解缓冲区的作用和重要性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LabVIEW.vi
    优质
    本示例程序展示了如何使用LabVIEW创建一个生产者-消费者模型,通过数据队列实现线程间的高效通信和任务处理。 本段落档描述了一个使用生产者-消费者模式的例程,该例程通过一个大小为30个点的缓冲区连接生产者与消费者,并传递连续的正弦波形数据。右下角设有一个“停止”按钮用于控制程序执行的暂停。 本VI(虚拟仪器)主要功能如下: 1. 实现五种不同的操作状态:不生产,只消费;生成速度快于消费速度;生成速率等于消费速率;生成慢于消费速率以及仅生产、不进行任何消耗。 2. 通过此例程来理解缓冲区的作用和重要性。
  • _LabVIEW_
    优质
    本实验通过LabVIEW平台实现经典生产者-消费者问题的模拟,利用队列结构解决多线程环境下的同步与互斥问题,加深对并发编程的理解。 学习如何使用LabVIEW实现生产者消费者数据结构,并掌握队列操作的相关知识。
  • LabVIEW 示例
    优质
    本示例展示如何使用LabVIEW创建生产者-消费者模型程序,通过队列管理数据流,避免线程间的直接交互,适用于实现高效的数据处理系统。 这是本人学习LabVIEW生产者消费者模型时收藏的资料,包含有关该模型的文档介绍和例程。这些资源真实有效,并且提供的例程可以正常运行。
  • jchc.rar_tearshmj_-问题(C++实现)_
    优质
    本资源提供了使用C++语言解决经典的生产者-消费者问题的代码示例,通过文件jchc.rar中的内容帮助学习者理解线程同步和互斥锁的应用。适合对并发编程感兴趣的开发者研究参考。 基于生产者/消费者模型,在Windows 2000环境下创建一个控制台进程,并在该进程中生成n个线程以模拟生产和消费过程,实现进程(或线程)间的同步与互斥功能。
  • LabVIEW 中基于事件的
    优质
    本文章介绍了在LabVIEW环境中实现基于事件的生产者-消费者设计模式的方法和技术,探讨了如何提高程序性能和模块化程度。 LabVIEW 基于事件的生产者消费者模式是一种设计方法,在这种模式下,一个或多个进程(生产者)生成数据并将其传递给另一个进程(消费者)。这种方法通过使用事件结构来实现异步通信,提高了程序的灵活性和响应能力。在 LabVIEW 中应用此模式可以帮助开发者构建更高效、模块化的应用程序。
  • 问题.zip
    优质
    生产者与消费者问题.zip包含了一个经典的计算机科学案例研究,探讨了多线程环境下的同步机制。通过模拟生产者制造产品和消费者使用产品的过程,此项目深入分析了如何避免数据竞争和死锁,确保系统稳定运行。 设计一个程序:由一个父进程创建三个子进程。其中一个是生产者进程,另外两个是消费者进程。所有这些父子进程都使用父进程创建的共享存储区进行通信。具体来说,生产者进程将一个数组中的十个数值发送到包含五个缓冲区的共享内存中;而两个消费者进程则轮流接收并输出这十个数值,并同时对读取的数值进行累加求和操作。
  • 问题.cpp
    优质
    本代码实现了一个经典的计算机科学问题——生产者与消费者问题,通过C++编程语言中的多线程技术模拟资源生产和消费过程,确保数据同步和互斥访问。 一组生产者进程负责生成产品供消费者进程使用。系统包含一个有n个缓冲区的池子,每个生产者一次向一个单独的缓冲区内添加消息,而消费者则从这些缓冲区中取出消息进行消费。这种问题可以被看作是相互协作进程中的一种抽象情况。 在这种情况下,不允许消费者访问空的缓冲区去获取产品;同时也不允许生产者往已经满且没有被任何其他进程取走产品的缓冲区里放置新的产品。 我们可以使用一个数组来表示这个有n个(从0到n-1)缓冲区的池子。我们用输入指针in来标记下一个可以接收新消息的位置,每当生产者成功添加了一个新产品之后,就会将in值加一;同时利用输出指针out指示消费者可以从哪里取走产品,每次当一个产品被取出后,out也会相应地增加。 由于缓冲区是循环数组的形式组织的,在这种情况下需要引入互斥信号量mutex来确保多个进程对同一池子访问时不会发生冲突。此外还使用了两个其他类型的信号量empty和full分别代表当前空闲与已满状态下的缓冲区数量,以帮助协调生产和消费过程中的同步问题。
  • C++中的
    优质
    本篇教程将详细介绍C++编程语言中实现生产者-消费者问题的方法和技巧,包括使用队列、条件变量等技术来解决线程同步与互斥访问的问题。适合对并发编程感兴趣的开发者学习参考。 生产者-消费者模式是一个经典的并发编程模型,在C++中的实现可以参考一些国外开发者写的示例代码。这些示例通常会详细展示如何使用多线程来模拟资源生产和消费的过程,非常适合学习和理解该设计模式的原理及应用。 如果需要查找相关的演示代码或文档,请尝试搜索技术论坛或者官方库文件中提供的例子,这样可以帮助更好地掌握这种模式的具体实现方式。
  • C++中的
    优质
    简介:本文章将探讨C++编程语言中实现消费者生产者模式的方法与技巧,分析其在多线程程序设计中的应用及其重要性。 ```c++ #include #include // 定义ThreadInfo结构体用于存储线程相关信息 typedef struct { int serial; double delay; int n_request; int thread_request[MAX_THREAD_NUM]; } ThreadInfo; int Buffer_Critical[MAX_BUFFER_POSITION]; // 缓冲区状态数组 void Produce(void *p); void Consume(void * p); // 主函数或调用这些线程的其他部分 int main() { HANDLE hMutex = CreateMutex(NULL, FALSE, Global\\h_mutex); HANDLE emptySemaphore = CreateSemaphore(NULL, MAX_BUFFER_POSITION - 1, MAX_BUFFER_POSITION - 1, empty_semaphore); // 创建生产者和消费者线程并传递相关参数,这里省略具体创建过程 } // 生产者进程函数 void Produce(void *p) { DWORD wait_for_mutex; DWORD wait_for_semaphore; int m_serial; ThreadInfo* info = (ThreadInfo*) p; // 从结构体中获取生产者的序列号和延迟时间(毫秒) m_serial = info->serial; Sleep(info->delay * INTE_PER_SEC); printf(Producer %2d sends the produce require.\n, m_serial); wait_for_mutex = WaitForSingleObject(hMutex, -1); // 获取互斥锁 wait_for_semaphore = WaitForSingleObject(emptySemaphore, -1); int ProducePos = FindProducePosition(); ReleaseMutex(hMutex); printf(Producer %2d begin to produce at position %2d.\n, m_serial, ProducePos); Buffer_Critical[ProducePos] = m_serial; // 生产者ID作为产品编号 printf(Producer %2d finish producing:\n ,m_serial); printf(position[%2d]:%3d\n\n ,ProducePos,Buffer_Critical[ProducePos]); ReleaseSemaphore(emptySemaphore, 1, NULL); } // 消费者进程函数 void Consume(void *p) { DWORD wait_for_semaphore; int m_serial; ThreadInfo* info = (ThreadInfo*) p; // 获取消费者序列号和延迟时间(毫秒) m_serial = info->serial; Sleep(info->delay * INTE_PER_SEC); for(int i=0 ;in_request;i++) { printf(Consumer %2d request to consume product %2d\n,m_serial,info->thread_request[i]); wait_for_semaphore = WaitForSingleObject(hSemaphore[info->thread_request[i]], -1); int BufferPos = FindBufferPosition(info->thread_request[i]); EnterCriticalSection(&PC_Critical[BufferPos]); printf(Consumer %2d begin to consume product %2d\n,m_serial, info->thread_request[i]); if(!IfInOtherRequest(info->thread_request[i])) { Buffer_Critical[BufferPos] = -1; printf(Consumer %2d finish consuming product:\n , m_serial); printf(position[%2d]:%3d\n, BufferPos, Buffer_Critical[BufferPos]); ReleaseSemaphore(emptySemaphore, 1, NULL); // 增加空缓冲区信号量 } else { printf(Consumer %2d finish consuming product %2d.\n , m_serial ,info->thread_request[i]); } LeaveCriticalSection(&PC_Critical[BufferPos]); } } // 其他辅助函数,如FindProducePosition, FindBufferPosition, IfInOtherRequest等 ``` 这段代码定义了生产者和消费者线程的实现,并通过互斥锁、信号量来保证并发操作的安全性。具体而言: - `main` 函数用于创建并初始化必要的同步对象。 - 生产者函数在获得空缓冲区后,将自身序列号作为产品写入指定位置;同时释放相应生产者的消费者数量限制,以允许其他等待的消费者进行消费。 - 消费者线程则请求所需的产品,并在其可用时进入临界区执行具体操作。若该产品的所有需求均被满足,则会重置缓冲区状态并增加空缓冲区信号量。 上述代码中未包含具体的辅助函数实现,如`FindProducePosition`, `FindBufferPosition`, 和 `IfInOtherRequest`等,这些在实际应用时需要根据具体情况来编写。
  • C++
    优质
    本书《生产商与消费者》采用C++语言编写示例,深入浅出地探讨了市场经济中生产商和消费者的互动关系,结合编程实例阐述经济学原理。适合程序设计人员及经济学者阅读参考。 生产者与消费者是C++中的经典问题。这个问题描述了两个并发进程之间的交互:一个负责生成数据(生产者),另一个则消费这些数据(消费者)。在实现这个模式时,通常会使用线程安全的数据结构来保证生产和消费过程的同步和互斥访问。