Advertisement

Algebraic Geometry and Coding Theory

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
Algebraic Geometry and Coding Theory探讨代数几何原理及其在编码理论中的应用,涵盖纠错码设计、信息安全及高效数据传输等方面。 Coding Theory and Algebraic Geometry explore the intersection between coding theory, which deals with the design and analysis of error-correcting codes for data transmission and storage, and algebraic geometry, a branch of mathematics that studies solutions to polynomial equations. This interdisciplinary field leverages geometric techniques to solve problems in coding theory, leading to advancements in both areas.

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Algebraic Geometry and Coding Theory
    优质
    Algebraic Geometry and Coding Theory探讨代数几何原理及其在编码理论中的应用,涵盖纠错码设计、信息安全及高效数据传输等方面。 Coding Theory and Algebraic Geometry explore the intersection between coding theory, which deals with the design and analysis of error-correcting codes for data transmission and storage, and algebraic geometry, a branch of mathematics that studies solutions to polynomial equations. This interdisciplinary field leverages geometric techniques to solve problems in coding theory, leading to advancements in both areas.
  • Algebraic Geometry with Statistical Learning Theory
    优质
    本研究探讨代数几何与统计学习理论之间的联系,结合抽象数学结构和现代数据科学方法,旨在开辟机器学习的新领域。 Watanabes book is set to be highly influential, as it establishes the groundwork for applying algebraic geometry in statistical learning theory. Many models and machines are singular—examples include mixture models, neural networks, HMMs (hidden Markov models), Bayesian networks, and stochastic context-free grammars. The theory developed here provides accurate estimation techniques even when dealing with singularities.
  • Information Theory and Coding Theory
    优质
    信息论与编码理论是研究信息的量化、传输和存储的数学原理,涵盖数据压缩、错误检测与纠正等内容,在通信工程及计算机科学中具有重要应用价值。 Robert J McElieces revised edition is tailored for students and provides a comprehensive introduction to the fundamental concepts in information theory and coding. This field was developed to address the core challenge of communication: accurately reproducing messages at one location that were selected elsewhere, either exactly or approximately. The book begins with an introductory overview that simplifies the concept of coding for readers new to the subject. Following this are detailed discussions on channel and source coding theorems, which form the backbone of information theory. The text also delves into specific coding schemes used in both channel and source coding contexts. Suitable for self-study or as a course textbook at either graduate or undergraduate levels, it includes numerous worked examples and hundreds of problems to aid understanding. Readers with some background knowledge of probability and linear algebra will find the exposition clear and accessible.
  • Theory and Applications of Channel Coding Algorithms
    优质
    本书《通道编码算法的理论与应用》深入探讨了现代通信系统中通道编码的基本原理及其在实际中的应用,为读者提供了全面的理解和实用的知识。 ### 信道编码算法理论与应用 #### 一、信道编码概述 信道编码是一种在数据传输过程中用于提高数据可靠性的技术手段。它通过添加冗余信息来对抗噪声,确保接收端能够准确无误地恢复原始数据。该技术广泛应用于移动通信、卫星通信和存储系统等多个领域。 #### 二、《信道编码:理论、算法与应用》书籍介绍 《信道编码:理论、算法与应用》是一本于2014年出版的专业著作,由David Declerq、Marc Fossorier和Ezio Biglieri共同编著。本书涵盖了信道编码的基本原理、最新进展以及实际应用案例,是从事无线通信领域的工程师和技术人员的重要参考资料。 #### 三、信道编码理论基础 **1. 编码目的** 信道编码的主要目的是提高数据传输的可靠性,在信号受到噪声干扰时确保接收端能够准确恢复原始数据。通过使用信道编码技术可以有效减少误码率,保证通信质量。 **2. 编码原理** - **线性编码**: 基于线性代数原理,分为系统码和非系统码。 - **循环码**: 具有良好的代数结构,易于实现且纠错能力强。 - **卷积码**: 利用滑动窗口进行编码,适用于连续数据流传输。 - **Turbo码**: 结合了并行交织和迭代解码技术,具有非常高的纠错性能。 - **LDPC码**: 低密度奇偶校验码,在现代通信系统中广泛应用。 **3. 编码设计** 在设计信道编码方案时需要考虑多个因素,包括编码效率、解码复杂度以及抗干扰能力等。一个好的编码方案应该能够在保证较高传输速率的同时最大限度地减少误码率。 #### 四、信道编码的应用场景 **1. 移动通信** 移动通信系统中由于无线信道的不稳定性和多径效应的存在,使用高效的信道编码技术尤为重要。例如,在3GPP LTE标准中就采用了Turbo码和LDPC码作为主要的前向纠错编码方案。 **2. 卫星通信** 卫星通信面临更严峻的挑战如远距离传播带来的衰减以及大气层中的散射等现象,因此高效的信道编码技术对于提高可靠性至关重要。 **3. 数据存储** 在数据存储领域中(尤其是硬盘驱动器和固态硬盘),通过采用适当的信道编码可以有效防止数据损坏或丢失,并提升其完整性和持久性。 #### 五、未来发展趋势 随着通信技术的不断发展,对更高效低复杂度且适应性强的信道编码需求日益增长。对于新兴5G网络及物联网应用来说,还将出现更多创新性的编码方案以满足不同应用场景的需求。 《信道编码:理论、算法与应用》不仅提供了基础理论知识还深入探讨了其在各领域的具体应用情况。此书非常适合希望深入了解这一技术及其实际运用的读者阅读学习,帮助他们掌握核心原理并了解最新进展趋势。
  • An Invitation to Algebraic Geometry
    优质
    本书《An Invitation to Algebraic Geometry》以浅显易懂的方式介绍了代数几何的基本概念和原理,适合初学者入门。书中通过丰富的例子与直观解释帮助读者理解抽象理论,并激发进一步研究的兴趣。 An Invitation to Algebraic Geometry This text invites readers into the fascinating world of algebraic geometry, a branch of mathematics that studies solutions to polynomial equations using techniques from abstract algebra and geometry. It aims to provide an accessible introduction for those new to the subject while also offering insights beneficial to more experienced mathematicians. Algebraic geometry combines elements from various mathematical disciplines, including commutative algebra, complex analysis, and topology, creating a rich tapestry of ideas that have found applications in diverse areas such as cryptography, robotics, and string theory. The study of algebraic varieties over different fields—real numbers, complex numbers, finite fields—provides deep connections between seemingly disparate branches of mathematics. The invitation to explore this field encourages learners to engage with fundamental concepts like affine and projective spaces, sheaves, schemes, and cohomology theories that are crucial for advancing knowledge in modern algebraic geometry. Through careful examination of these topics, readers will gain a deeper appreciation for the elegance and power inherent within this mathematical discipline. By presenting key ideas through concrete examples and detailed explanations, An Invitation to Algebraic Geometry seeks not only to introduce beginners but also to inspire further exploration into more advanced topics within the field.
  • Algebraic Coding Theory(作者:Elwyn Berlekamp)信道编译码理论.pdf
    优质
    《Algebraic Coding Theory》由著名数学家和信息论专家埃尔温·伯利坎普撰写,本书深入探讨了代数编码理论的核心概念、技术与应用,是该领域的经典著作。 信道编译码领域很不错的一本参考书是《Algebraic Coding Theory》,作者为Elwyn Berlekamp。
  • Commutative Algebra Oriented Towards Algebraic Geometry (GTM 15...)
    优质
    这本书籍是Graduate Texts in Mathematics系列的一部分,旨在为数学研究生提供关于交换代数及其在代数几何领域应用的深入指导。 在抽象代数中,交换代数致力于研究交换环及其理想,并探讨交换环上的模。
  • Algebraic Graph Theory - Springer (2001).pdf
    优质
    《Algebraic Graph Theory》由Springer出版社于2001年出版,本书深入探讨了代数图论的核心概念与理论,结合线性代数和群论方法分析图形结构。 Algebraic Graph Theory by Chris Godsil and Gordon F. Royle, published in 2001 as part of the Graduate Texts in Mathematics series by Springer.
  • Wireless Networks and Stochastic Geometry
    优质
    《Wireless Networks and Stochastic Geometry》一书结合随机几何理论与无线网络设计,深入探讨了无线通信系统中的关键问题和解决方案。 《Stochastic Geometry for Wireless Networks》是由Martin Haenggi编写的教材。这本书深入探讨了随机几何在无线网络中的应用,并提供了理论分析与实际问题解决之间的桥梁。书中涵盖了从基础概念到高级技术的广泛内容,是研究和理解现代无线通信系统中空间分布和干扰建模的重要资源。
  • Modern Coding Theory by T. Richardson & R. Urbanke
    优质
    《现代编码理论》由T. Richardson和R. Urbanke撰写,本书深入探讨了现代通信系统中使用的高级编码技术,是该领域的权威著作。 这本书旨在总结迭代信道编码领域的最新进展。这一领域还有两个常用的名称是概率编码和图上的码。迭代解码最初是由Gallager在1960年的杰出论文中提出的,之后长期被遗忘。它于1993年以Turbo码的形式由Berrou、Glavieux等人重新发现,并且在同一时期独立地由MacKay和McNeal、Sipser和Spielman以及Luby、Mitzenmacher、Shokrollahi、Spielman和Stemann等研究人员在形式上更接近Gallager原始构想的方式下再次被发现。迭代技术对编码理论与实践产生了深远的影响,并且在整个通信领域也引起了广泛的重视。