Advertisement

超宽带天线的设计与原理【(美)尚茨 著】

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本书由美国作者尚茨撰写,深入浅出地阐述了超宽带天线设计的基本理论和实际应用技巧。书中涵盖了超宽带技术的核心概念、工作原理及最新研究成果,并提供了丰富的实例分析和技术指导,适合相关领域的研究人员与工程师参考阅读。 本段落介绍了超宽带天线的原理与设计,并对各种超宽带天线进行了基本总结。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线【(
    优质
    本书由美国作者尚茨撰写,深入浅出地阐述了超宽带天线设计的基本理论和实际应用技巧。书中涵盖了超宽带技术的核心概念、工作原理及最新研究成果,并提供了丰富的实例分析和技术指导,适合相关领域的研究人员与工程师参考阅读。 本段落介绍了超宽带天线的原理与设计,并对各种超宽带天线进行了基本总结。
  • 滤波线制造
    优质
    本研究专注于宽带阻带滤波天线的设计与制造技术,旨在开发具备宽频带、高选择性及抑制特定干扰频率的新型天线。通过优化结构参数和材料选用,实现高效电磁信号传输,适用于雷达系统、无线通信等领域的高性能需求。 本段落详细介绍了宽阻带滤波天线的设计与制作过程,旨在通过抑制无线通信系统中的带外信号干扰来保护工作频段的纯净度,并确保天线具有较宽的工作频率范围及有效的阻带性能。 文章首先阐述了微带天线的基本设计。鉴于其轻便、小巧且成本低廉的特点,微带天线在现代无线通信领域内得到了广泛应用。本项目中的微带天线设定了2.45GHz的中心工作频率,并采用介电常数为2.2的材料作为基板,尺寸具体为48mm x 45mm。馈电方式采用了3.2毫米宽的微带线,并通过引入一段四分之一波长阻抗变换器优化了天线与50欧姆传输线路之间的匹配度。经过一系列调整后,最终获得了理想的S11参数和中心频点方向图。 接着文章深入探讨了一个二阶切比雪夫低通滤波器的设计过程。为了减少微带天线在非工作频率上的谐振效应,设计的该滤波器旨在覆盖2.43GHz至2.46GHz的工作区间,并具有宽广的阻带特性以抑制不必要的信号干扰。 完成上述两个组件的设计后,文章进一步描述了如何将二者整合为一个完整的系统。通过微调优化连接方式和参数设置,确保整个系统的性能既满足宽带阻带要求又能保持良好的天线工作特性。 最后,本段落通过对该滤波天线的测试验证了其设计的有效性与预期一致。实际测量结果证明,在宽广的阻带上仍然能够维持优秀的频段表现,并且通过特定设备获取到了关键评估指标如S11参数和辐射方向图等数据。 综上所述,本篇文章揭示了在开发具有强大干扰抑制功能滤波天线时所需考量的关键因素:包括微带天线与滤波器之间的兼容性以及如何精准调整以确保宽阻带的同时不牺牲工作频段的性能。此外还强调了仿真结果与实际测试一致性的重要性作为评估设计成功与否的重要标准,这对提升现代无线通信系统的可靠性和效率至关重要。
  • 双层微线
    优质
    本项目专注于宽带双层微带天线的设计与优化,通过创新结构实现更宽的工作频段和高效性能,在无线通信领域具有重要应用价值。 微带天线是在带有导体接地板的介质基片上附加导体贴片构成的。通过使用微带线或同轴探针给贴片馈电,在贴片与接地板之间激发电磁场,并且通过贴片上的缝隙向外辐射信号。
  • 具备三陷波特性线
    优质
    本研究致力于开发一种具有三陷频特性的新型超宽带天线。通过优化结构参数,该设计能在特定频率范围内实现信号抑制,同时保持良好的宽带性能和小型化特点,适用于复杂的电磁环境。 我们设计了一款基于共面波导(CPW)馈电的小型化超宽带天线,并赋予其三陷波特性的功能。该天线采用了矩形贴片组合作为辐射单元,通过在辐射贴片上开倒U型、圆弧形和S形缝隙来实现陷波效果,有效地抑制了WiMAX(3.3~3.7GHz)、WLAN(5.150~5.825GHz)以及X波段卫星通信系统下行频率段(7.25~7.75GHz)对超宽带系统的干扰。实验结果显示:该天线在频带范围为3.1至12.0GHz时,电压驻波比小于2,并在整个工作频段内保持稳定的增益和良好的辐射方向特性。
  • 如何线及扩展微线
    优质
    本文探讨了天线带宽的基本计算方法,并介绍了几种有效的技术手段来扩展微带天线的带宽,旨在为无线通信系统的设计提供理论支持和实践指导。 本段落介绍了天线带宽的定义,并推导了天线阻抗相对带宽的一般式,特别强调了微带天线的带宽特性。
  • 基于遗传算法线优化
    优质
    本研究运用遗传算法对超宽带天线进行优化设计,旨在提升其频带宽广度及性能稳定性,为无线通信技术的发展提供新的解决方案。 为解决传统超宽带天线设计中存在的辐射脉冲波形拖尾振荡问题, 提出了一种基于遗传算法的优化方法。该方法通过采用保真系数和回波损耗作为适应度函数,形成目标函数,并在此基础上对确定结构进行参数调整以实现时域辐射波形的改进。 具体而言,在设计过程中采用了以下步骤: - **加权目标函数**:将天线输出波形与理想模型之间的相似程度(即保真系数)和信号传输效率(回波损耗)相结合,作为遗传算法优化过程中的指导标准。 - **参数调整策略**:通过编码技术将关键的几何尺寸等转换为可以被遗传操作处理的形式,并运用选择、交叉及变异的操作来不断改进天线设计以达到最优目标函数值。 实验结果表明: - 采用上述方法所设计出的一款单极锥超宽带天线,其在高低平面内的辐射波形一致性良好。 - 相较于传统设计方案而言,在优化后的天线上观察到了显著减少的拖尾振荡现象,这证明了该技术的有效性。 此外,通过仿真验证(使用时域有限差分法),还展示了优化后单极锥超宽带天线在阻抗特性和辐射方向图等方面的优越性能。综上所述,本段落提出的方法为解决传统UWB天线设计中的波形拖尾振荡问题提供了一种有效途径,并且具有重要的工程应用价值。
  • 有槽双频段线
    优质
    本作品设计了一种创新性的带有槽口结构的双频段超宽带微带天线,能够在两个不同频率范围内高效工作。 双频段带槽超宽带微带天线是为覆盖超宽带(UWB)通信系统而设计的新型天线。近年来,UWB技术迅速发展,并通过极宽的工作频率范围支持WiMAX和WLAN等无线网络系统的运行。然而,传统的超宽带天线工作在3.1GHz到10.6GHz频段内时可能会受到WiMAX或WLAN干扰,因此需要设计具备双频段阻带特性的新型天线。 研究团队提出了一种创新的微带天线设计方案,在半圆形辐射贴片上蚀刻互补分裂环形结构(split ring resonator),使该天线在3.3GHz到3.7GHz和5.15GHz到5.85GHz两个频段内具备良好的阻带特性。这两个频率范围正好覆盖了WiMAX与WLAN的工作区间,使得干扰得到有效抑制。此外,这种新型天线工作于2.8GHz至12GHz的宽广频带上,在该范围内增益从2.3dB到6.3dB变化,并且在水平面(H平面)上显示全向辐射特性。 为提升超宽带微带天线性能和适应多样化的应用环境,研究人员探索了多种实现双频段阻带特性的技术方案。例如,通过添加L型或E型槽于辐射贴片与接地平面上来引入特定频率范围内的衰减;在正方形辐射贴片上设计修正的T形槽,并结合两个E形和W形导体背板结构以实现双频段阻带特性;以及利用馈电线上的准互补分裂环蚀刻技术,成功开发出平面单极子天线。此外,还通过使用三叉形状馈电线路与嵌套C型短路销设计了具有圆形槽的超宽带微带天线。 在以上研究中,采用阿基米德螺旋形渐变槽结构以实现所需双频段阻带特性也得到了应用验证。这些技术方案旨在确保对WLAN和WiMAX频率范围内的有效抑制作用。 本研究所提出的天线设计通过引入分裂环的互补结构于半圆形辐射贴片内,在两个指定的阻带区间实现了优良的衰减效果,从而显著减少了系统间的干扰问题。该设计方案基于微带技术实现,并因其紧凑、低成本及易于与微波集成电路集成等优势在现代通信领域广泛应用。为了确保天线性能满足设计要求,必须仔细考虑其尺寸大小、形状以及制造工艺等因素。 超宽带天线的发展为高速数据传输提供了更宽的频谱资源,而具备双频段阻带特性的新型天线则能够有效避免与现有无线通信系统频率重叠问题,从而提高整体通信质量。哈尔滨工业大学电子与信息工程学院的研究人员Ying Sio、Wei Li和Hongyong Wang的工作表明通过精确控制天线结构参数可以灵活设计满足特定需求的超宽带微带天线。
  • 线程序:基于MATLAB对数周期线开发
    优质
    本项目介绍了一种利用MATLAB软件进行宽带对数周期天线的设计与优化的方法。通过该程序可以实现高效、精确地分析和设计宽带天线,适用于通信系统中多频段应用需求。 宽带对数周期天线是一种广泛应用在无线通信领域的高效设备,因其宽频带特性而受到欢迎。这种天线的设计涉及电磁学、射频工程及MATLAB编程等多个领域。作为强大的数学计算与仿真工具,MATLAB广泛应用于天线设计、信号处理以及电磁场建模。 文中提到的“DD1”和“DD-NEWS”频道可能是特定广播或电视频道频率,表明该设计方案是为某一特定频段进行优化的。对数周期天线的设计目标通常包括覆盖尽可能宽的频率范围,并保持良好的辐射性能与方向性。在无线通信中,这样的天线能够接收不同频率信号,在多种应用场景下表现出色,如广播接收、移动通信基站或卫星通信。 MATLAB在宽带对数周期天线设计中的应用主要包括以下方面: 1. **理论建模**:通过编写脚本,可以进行理论计算,例如确定天线几何尺寸、谐振频率预测及辐射性能评估。这通常涉及傅里叶变换、微分方程求解和数值方法。 2. **参数优化**:利用MATLAB编程自动调整天线结构参数(如长度、宽度与间隔),寻找最优设计方案以满足特定性能指标。 3. **电磁仿真**:结合其电磁仿真工具箱,可以进行三维电磁场模拟预测天线在不同频率下的表现,验证设计的有效性。 4. **数据分析**:处理并分析仿真结果,绘制天线的频率响应、增益曲线和方向图以理解实际应用中的性能表现。 5. **实验对比**:通过比较实测数据与仿真结果评估天线的实际性能,并进行必要的调整优化设计方案。 在“logperiodic_script.zip”压缩包中,可能包含上述所有步骤的相关MATLAB脚本段落件。这些脚本包括定义天线几何结构的函数、计算和优化参数的主程序、生成仿真模型的代码及分析结果的脚本。用户可以运行这些脚本来学习理解宽带对数周期天线的设计过程,并根据自身需求进行修改定制。 设计宽带对数周期天线是一项涉及多领域知识的任务,而MATLAB提供了一套高效灵活工具使得这一过程更加直观可控。通过深入研究和实践,我们可以利用该平台解决实际通信系统中的频率覆盖问题并提高信号接收质量与稳定性。
  • 线论和技术 阮成礼
    优质
    阮成礼专著《超宽带天线的理论和技术》一书深入探讨了超宽带通信技术中的关键问题,系统阐述了超宽带天线的设计原理与实现方法。本书适合从事无线通信、雷达及电子战等领域的科研人员和工程技术人员参考阅读,亦可供高等院校相关专业师生学习使用。 《超宽带天线理论与技术》一书由阮成礼编写,深入探讨了超宽带通信领域的关键技术和发展趋势。书中详细介绍了超宽带天线的设计原理、性能分析以及实际应用案例,为读者提供了全面的知识体系和技术指导。该著作对于从事无线通信研究和开发的专业人士具有重要的参考价值。