Advertisement

电控液压助力转向系统及主动悬架的集成控制(2008年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文探讨了将电控液压助力转向与主动悬架系统相结合的技术方案,旨在通过集成控制提升车辆操控性和乘坐舒适性。研究于2008年开展。 我们建立了整车主动悬架与电控液压助力转向系统动力学模型,并分析了在PID控制下的双闭环电控液压助力转向系统的输出力矩。通过车身姿态参数动态调整悬架作动器的作用力,实现了悬架和转向的集成控制系统。相比传统的悬架和转向系统,我们引入预测控制理论并建立了相应的控制器,在确保车辆操作轻便性的同时,显著提升了整车操纵稳定性、安全性和行驶平顺性等综合性能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2008
    优质
    本文探讨了将电控液压助力转向与主动悬架系统相结合的技术方案,旨在通过集成控制提升车辆操控性和乘坐舒适性。研究于2008年开展。 我们建立了整车主动悬架与电控液压助力转向系统动力学模型,并分析了在PID控制下的双闭环电控液压助力转向系统的输出力矩。通过车身姿态参数动态调整悬架作动器的作用力,实现了悬架和转向的集成控制系统。相比传统的悬架和转向系统,我们引入预测控制理论并建立了相应的控制器,在确保车辆操作轻便性的同时,显著提升了整车操纵稳定性、安全性和行驶平顺性等综合性能。
  • LQG_LQG_挂_LQG for active suspension_LQG
    优质
    本项目研究LQG(线性二次高斯)控制理论在汽车主动悬架系统中的应用,旨在通过优化算法提高车辆行驶时的舒适性和稳定性。 关于主动悬架LQG控制的程序实用且易于操作。
  • LQG.rar_最优_LQG器_优化
    优质
    本研究探讨了基于LQG(线性二次高斯)理论的主动悬架控制系统设计,旨在通过优化算法提升车辆行驶舒适性和稳定性。 使用MATLAB/Simulink创建悬架模型,并设计LQG最优控制器以实现汽车主动悬架的最优控制。
  • 协同仿真
    优质
    本研究探讨了电动液压助力转向系统(EHPS)的协同仿真技术,通过集成机械、电气和流体动力学模型,实现对车辆转向性能的高效精确模拟与优化。 ### 电动液压助力转向系统的联合仿真 #### 引言 电动液压助力转向系统(Electric-Hydraulic Power Steering System, EHPS)是传统液压助力转向系统(Hydraulic Power Steering, HPS)的一种改进技术,它利用电动机替代传统的发动机驱动油泵,实现了根据车辆工况提供更精确的助力效果。这种系统不仅提高了转向操作的灵活性和舒适性,还增强了驾驶者的路感体验。EHPS系统的组成包括转向操纵机构、转向传动机构、动力转向器总成、电子控制单元(Electronic Control Unit, ECU)、电动机、油泵、转向阀、车速传感器及转向盘角速度传感器等。 #### 二、电动液压助力转向系统简介 电动液压助力转向系统是一种混合型的助力转向系统,其核心在于结合了电动机与液压系统的优点。相比于传统的液压助力转向系统,EHPS能够在不同的工况下提供更加合适的助力效果,使驾驶者能够更轻松地操纵方向盘,并保证足够的路感以满足现代汽车对转向系统的需求。 EHPS主要包括以下组成部分: - **转向操纵机构**:传递驾驶员的转向指令。 - **转向传动机构**:将驾驶员的转向力传递给车轮。 - **动力转向器总成**:实现助力效果的关键部件。 - **ECU**:处理各种传感器数据,控制电动机的工作状态。 - **电动机**:为油泵提供动力。 - **油泵**:加压液压油以供助力转向使用。 - **转向阀**:控制液压油的流向和流量,实现助力效果。 - **车速传感器**:监测车辆的速度。 - **转向盘角速度传感器**:检测方向盘转动情况。 #### 三、电动液压助力转向系统的建模与仿真 ##### 动力转向ECU模型 动力转向ECU接收来自车速传感器和转向盘角速度传感器的数据,并根据这些数据调整电动机的工作状态。通常采用PID控制器来实现这一过程,通过当前偏差及其变化率动态调整控制参数以达到最优效果。 ##### 电动液压泵模型 该模型模拟油泵工作状态,其转速与方向由ECU决定。在仿真中需要考虑油泵的效率、最大输出压力等因素。 ##### 转向阀模型 转向阀是EHPS系统的重要部分,决定了液压油流向和流量。通过调整节流阀开度来改变液动力学特性及助力效果。 ##### 多体动力学模型 利用AMESim软件建立了EHPS系统的多体动力学模型,包括了转向盘、扭杆、转向阀等关键组件的模拟。AMESim用于机械系统仿真分析,能够精确地模拟EHPS在各种工况下的动态行为。 #### 四、联合仿真技术 为了全面仿真EHPS系统,研究者采用AMESim和MATLABSimulink进行联合仿真。具体而言,AMESim建立动力学模型而MATLABSimulink构建ECU控制算法模型。通过创建S函数实现两个平台之间的接口连接,并共享数据及交互计算。 联合仿真的结果验证了EHPS的动力学模型与控制策略的正确性,证明系统的可行性和有效性。 #### 五、结论 通过对电动液压助力转向系统(EHPS)进行联合仿真分析,深入理解其运行机制及其控制策略。基于AMESim和MATLABSimulink的联合仿真技术不仅为EHPS设计提供了重要的技术支持,还为进一步优化该系统性能奠定了基础。
  • 汽车器设计
    优质
    本项目专注于汽车电动助力转向系统(EPS)的控制器设计与优化,旨在提升驾驶体验和车辆安全性。通过精确控制算法实现高效、稳定且响应迅速的方向盘助力效果。 ### 汽车电动助力转向系统控制器设计 #### 引言 随着汽车技术的不断发展,汽车转向系统已经从最初的纯机械转向系统逐步演进至机械液压动力转向系统、电控液压动力转向系统,并且正朝着更为节能高效、操控性更佳的电子控制式电动助力转向系统(Electric Power Steering System,简称EPS)发展。为了实现驾驶过程中对电机助力状态的高性能控制,EPS控制系统需具备实时监控汽车行驶状态信号的能力,并能够依据一系列控制策略快速调整电机的工作状态,这一切均由控制器(Electronic Control Unit, ECU)来完成。本段落基于PHILIPS公司的8位单片机P87LPC768为核心,设计了一款适用于EPS系统的控制器。 #### 电动助力转向系统结构和工作原理 电动助力转向系统可以根据驾驶员的操作以及当前的路况和车况信息,通过电子控制单元(ECU)处理后向电动机发出控制指令,进而通过减速增矩机构产生助力转矩,帮助驾驶员完成转向操作。EPS系统主要包括以下组件: - **电子控制单元(ECU)**:用于处理传感器输入的信息,并根据预设的算法计算出相应的控制指令发送给电动机。 - **电动机**:为转向提供辅助动力。 - **电磁离合器**:在需要时将电动机的动力传递给减速机构。 - **减速机构**:用于将电动机的高速低扭矩转换成低速高扭矩。 - **扭矩传感器**:检测驾驶员施加在转向盘上的扭矩大小。 - **车速传感器**:监测车辆当前的速度。 EPS系统的工作原理是:当驾驶员转动方向盘时,扭矩传感器会检测到扭矩的变化并将信号传送给ECU;同时,车速传感器也会将车辆速度信息发送给ECU。ECU根据这些信息计算出所需的辅助扭矩,并控制电动机提供相应的助力,以减少驾驶员所需施加的力量。 #### 控制器设计 本研究中所设计的EPS控制器采用PHILIPS公司的P87LPC768单片机作为核心处理器。该控制器主要由以下几个部分组成: 1. **电源部分**:负责为整个系统提供稳定的电源供应。 2. **数据采集及处理部分**:包括各种传感器接口,用于收集来自扭矩传感器、车速传感器等的数据,并将这些数据传送给单片机进行处理。 3. **单片机及外围电路部分**:P87LPC768单片机负责接收处理后的数据,并根据预设的算法计算出控制指令。 4. **电机驱动部分**:将单片机的控制信号转换为适合驱动电机的信号。 5. **故障诊断和输出部分**:监测系统运行状态,一旦出现异常立即启动保护机制,并通过指示灯或其他方式通知驾驶员。 #### 抗干扰措施 为了提高系统的稳定性和可靠性,本研究还采取了一系列硬件措施来增强系统的抗干扰能力: - **电源滤波**:通过使用电容和其他滤波元件来消除电源噪声。 - **信号隔离**:采用光耦合器或磁耦合器等器件对关键信号进行隔离,防止外部干扰进入系统内部。 - **屏蔽与接地**:合理布置线路板,使用金属外壳进行屏蔽,并确保良好的接地,以减少电磁干扰的影响。 - **软件滤波**:在软件层面增加滤波算法,进一步提升系统的抗干扰性能。 #### 实验验证 通过实验验证,该EPS控制器能够准确地根据驾驶员的操作以及车辆的状态调整电动机的助力状态,有效地降低了能源消耗,提高了转向特性和行驶安全性。实验结果表明,该控制器设计满足了EPS系统的需求,助力性能良好,具有较强的实用价值。 本段落详细介绍了基于P87LPC768单片机的EPS控制器的设计思路与实现方法,以及为了提高系统的抗干扰能力而采取的一系列措施。通过理论分析和实验验证,证明了该控制器能够有效满足EPS系统对高性能控制的需求。
  • 四轮
    优质
    电控动力转向及四轮转向系统是一种先进的汽车驾驶辅助技术,通过电子控制实现更精准、灵活的方向盘操作和车辆操控性提升。 目前有关新能源汽车转向系统的基础资料包括了对电控、电机以及四轮转向系统的介绍。
  • 汽车前轮防抱死研究 - 汽车前轮防抱死研究.rar
    优质
    本研究探讨了汽车主动前轮转向与防抱死制动系统的集成技术,旨在通过优化控制系统提升车辆的操控性和安全性。 以车辆动力学软件Carsim 和Matlab /Simulink 为平台, 分别建立了基于滑模变结构控制的主动前轮转向和滑移率门限控制的防抱死制动系统控制器模型,并将这两种控制系统进行了集成,建立了一个联合仿真模型。在紧急制动工况下特别是在分离路面上进行刹车时,通过整合AFS(Active Front Steering)与ABS(Anti-lock Braking System),能够进一步提高ABS 的性能,在保持车辆稳定性的同时缩短了制动距离。模拟结果表明:这种结合滑模控制的主动前轮转向系统和基于滑移率门限控制的防抱死制动系统的集成控制系统,可以在紧急刹车时尤其是在μ-分离路面上表现出色,不仅提高了ABS的效果,并且同时保证车辆稳定性和减短刹车距离。
  • MATLAB.rar_1/4汽车PID_模糊PID_suspension_PID
    优质
    本资源提供了基于MATLAB的汽车主动悬架系统设计文档和代码,重点讲解了如何实现PID及模糊PID控制技术以优化车辆行驶过程中的舒适性和稳定性。 标题 MATLAB.rar_1/4汽车主动悬架PID控制_matlab pid模糊_suspension_suspension PID 表明这是一项使用MATLAB进行的关于1/4汽车主动悬架系统中结合了PID控制器设计与模糊逻辑技术的研究项目。在这个项目里,工程师试图通过应用基础的PID控制器来优化车辆悬架系统的性能,并进一步利用模糊控制技术自动调整参数以适应不同的路面条件。 描述中的“pid控制正确”意味着已成功实现并验证了基本的PID控制器功能;然而,“模糊pid参数调试一直有问题”的部分揭示在将模糊逻辑融入到PID控制系统中进行自适应调节时遇到了挑战。这通常表明,在设计和实施模糊控制器或整合两者的过程中存在一些难题,可能涉及规则库构建、隶属函数选择或是推理过程中的具体问题。 标签进一步细化了项目的关键技术点: 1. **1/4汽车主动悬架pid控制**:这是项目的重点内容之一,即使用PID控制器来调整车辆模型中四分之一的模拟系统(含悬架)以确保行驶稳定性和舒适性。 2. **matlab_pid模糊**:这表明利用MATLAB中的工具箱进行将传统的PID控制与模糊逻辑相结合的工作。目的是通过非线性的特性增强传统PID控制器在面对复杂工况时的表现能力。 3. **suspension_suspension_pid**:特指悬架系统的PID控制系统,包括对车辆动态行为的建模以及优化调整PID参数的过程。 压缩包内的文件: - **test1124.fis 和 test1123.fis**: 这些是FIS(模糊推理系统)文件,在其中定义了输入变量和输出变量之间的关系及规则。 - **test1120_01.slx**:这是一个Simulink模型,它可能包含整个悬架系统的建模以及PID控制器与模糊控制逻辑的集成实现。通过这个界面可以模拟不同条件下的系统表现并进行调试。 综上所述,此项目旨在探讨如何利用MATLAB和相关工具箱将传统PID控制系统与先进的模糊逻辑相结合,以优化车辆主动悬架性能,并在面对各种路况时提供更佳的表现。面临的挑战主要集中在设计有效的模糊规则、实现精确的参数调整以及验证其实际效果等方面。
  • model1_1_LQR车辆_LQR_对比被.rar
    优质
    本资源探讨了利用LQR(线性二次型调节器)技术对车辆主动悬架系统进行优化控制的方法,通过与传统被动悬架的对比分析,展示了主动悬架在提升行车舒适性和安全性方面的优越性能。适用于研究和教学用途。 车辆主动悬架与被动悬架控制的比较分析采用LQR(线性二次型调节器)控制方法,适合刚开始学习现代控制理论算法的同学参考。