Advertisement

毫米波雷达心跳与呼吸信号提取算法及其参考文献

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了利用毫米波雷达技术提取人体心跳和呼吸信号的有效算法,并提供了相关的参考文献。通过优化信号处理方法,提高生命体征监测精度,适用于非接触医疗监控场景。 1. 使用TI IWR6843ISK+DCA1000采集的原始数据。 2. 对上述原始数据进行算法处理的MATLAB代码。 3. 算法主要针对距离在1米以内的人体生命体征信号,设计了两个带通滤波器来分别分离出较为理想的呼吸和心跳信号。通过使用估计包络以及移动平均滤波技术,可以提取到更加精确的归一化心跳信号。 4. 国内外相关参考文献。 算法资源仅供研究学习用途,请勿用于商业目的或收费出售。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了利用毫米波雷达技术提取人体心跳和呼吸信号的有效算法,并提供了相关的参考文献。通过优化信号处理方法,提高生命体征监测精度,适用于非接触医疗监控场景。 1. 使用TI IWR6843ISK+DCA1000采集的原始数据。 2. 对上述原始数据进行算法处理的MATLAB代码。 3. 算法主要针对距离在1米以内的人体生命体征信号,设计了两个带通滤波器来分别分离出较为理想的呼吸和心跳信号。通过使用估计包络以及移动平均滤波技术,可以提取到更加精确的归一化心跳信号。 4. 国内外相关参考文献。 算法资源仅供研究学习用途,请勿用于商业目的或收费出售。
  • 检测中的应用研究-论.docx
    优质
    本文探讨了毫米波雷达技术在非接触式呼吸和心跳监测领域的应用潜力,通过实验分析其准确性和可靠性,并提出优化方案以促进该技术的实际应用。 毫米波雷达呼吸心跳检测方法研究-论文.docx 该文档主要探讨了利用毫米波雷达进行人体呼吸和心跳的非接触式监测技术的研究进展与应用现状。通过分析现有文献和技术报告,本段落详细介绍了毫米波雷达在生物医学工程领域的潜力,并提出了一种新的算法以提高检测精度和稳定性。此外,文中还讨论了几项实验结果以及未来研究方向。 (注:由于原文未提供具体联系方式或网址信息,在重写时也未添加此类内容)
  • TI率检测原理 DriverVitalSigns_DevelopersGuide
    优质
    本指南深入解析了TI毫米波雷达技术在非接触式呼吸与心率监测中的应用原理,详述DriverVitalSigns开发套件的使用方法。 TI官方指南《DriverVitalSigns_DevelopersGuide》介绍了毫米波雷达心率、呼吸频率检测的基本原理和算法流程,并通过TI的AWR1642实现了其功能。
  • 】利用MATLAB进行生命体征()检测【附MATLAB源码 4049期】.mp4
    优质
    本视频介绍如何使用MATLAB和毫米波雷达技术检测人体的生命体征,包括呼吸与心跳,并提供相关的MATLAB源代码。适合科研和技术爱好者学习参考。 Matlab研究室上传的视频均配有完整的可运行代码,经测试确认可用,非常适合初学者使用。 1. 代码压缩包内容: - 主函数:main.m; - 其他调用函数文件;无需单独运行。 - 运行结果的效果图展示。 2. 支持的Matlab版本为2019b。如果在不同版本中遇到问题,请根据提示进行相应修改,或寻求帮助。 3. 运行操作步骤: 1. 将所有文件放置于当前工作目录下; 2. 双击打开main.m文件; 3. 点击运行按钮,并等待程序完成以获取结果。 4. 如果需要进一步的帮助或者服务,例如博客或资源的完整代码提供、期刊内容复现、Matlab程序定制等需求,请联系博主。此外也欢迎科研合作交流。
  • 监测】利用MATLAB进行检测【附带Matlab源码 9267期】.mp4
    优质
    本视频教程详细讲解了如何使用MATLAB分析毫米波雷达数据,以实现对人体呼吸和心跳的非接触式监测。教程包含实用的代码示例(附有9267期Matlab源码),适合科研与工程应用学习参考。 海神之光上传的视频展示的是完整代码运行的结果。这些代码均经过测试可以正常工作,并适合编程初学者使用。 1. 视频中展示了主函数main.m以及被调用的其他m文件的内容,其中仅需运行main.m; 2. 本项目基于Matlab 2019b版本编写;如遇到问题,请根据错误提示进行修改或寻求帮助。 3. 运行步骤如下: - 将所有相关文件放置于当前工作目录内; - 打开并双击main.m文件; - 点击运行,待程序执行完毕后查看结果。 4. 若需进一步的服务咨询,请私信博主;具体服务包括但不限于博客或资源完整代码提供、期刊论文复现、Matlab定制编程以及科研合作等。
  • 基于EMD分离方实现.zip
    优质
    本研究提出了一种运用EMD(经验模态分解)算法有效分离心跳和呼吸信号的方法,并详细介绍了该技术的具体实现过程。 经验模态分解(Empirical Mode Decomposition, EMD)是一种非线性、非平稳时间序列分析方法,由NASA的Huang等人于1998年提出。该算法主要用于处理复杂且非线性的物理现象,例如生物医学信号和环境数据等。在本项目中,EMD被用于分离传感器采集到的人体呼吸与心跳信号,在医疗监测及健康数据分析领域具有重要意义。 一、EMD的基本原理 EMD将复杂的信号分解为一系列内在模态函数(Intrinsic Mode Function, IMF),这些IMF反映了不同时间尺度和频率成分。其基本步骤包括: 1. 构造局部极大值和极小值得到上包络线与下包络线。 2. 计算平均包络线,并从原始信号中减去得到新的分量。 3. 判断新分量是否满足IMF定义:即在任意一点,上下两个零点之间的曲线段数最多比极大值和极小值多一个。若符合,则保留为IMF;否则继续进行步骤1至2的处理直至条件达成。 4. 重复上述过程直到原始信号只剩下一个无法再分解出新的IMF的部分为止,这通常对应于最低频率成分。 二、呼吸与心跳信号特征 人体生命体征的重要标志是呼吸和心跳。传感器可以捕获这两种生理活动产生的微弱生物电信号。一般来说,呼吸表现为周期性变化且其频率较低(约0.25-0.5 Hz),而心脏跳动则更为频繁(约1-2 Hz)。尽管两者在频域上有显著差异,在实际测量中往往相互重叠,因此需要有效分离。 三、EMD算法的应用 通过利用EMD技术,混合的呼吸与心跳信号能够被逐级分解为不同频率的IMF。这些低频和高频分量可能分别对应于呼吸和心脏活动产生的电信号变化。通过对每个IMF进行分析以确定代表哪一种生理现象,即使在存在较大噪声的情况下也能精确地实现二者的分离。 四、传感器技术 数据采集的关键设备是各种类型的传感器,包括电极式(如心电图)以及光学型(例如脉搏血氧仪)。它们能够捕捉到皮肤下的微弱生物电信号或光强度变化,并将其转换成可处理的数字信号。结合EMD算法使用后,可以显著提高其数据处理能力并应用于实时健康监测、疾病诊断及远程医疗服务等领域。 五、实际应用与挑战 在实际操作中,EMD方法需要应对噪声干扰、信号漂移以及个体差异等问题。通过优化参数设置,并引入滤波技术或者结合其他信号处理手段来改善分离效果是必要的措施之一;同时,在传感器选择、预处理技术和结果评价等方面也需要进一步研究和实践以确保算法的稳定性和可靠性。 综上所述,基于EMD的人体呼吸与心跳信号分离技术标志着生物医学领域的一大进步。它有助于更好地理解人体生理状态并提升健康监测的质量及效率,同时也对相关技术提出了更高要求从而推动了整个行业的持续发展。
  • 基于AWR1642的目标息测量系统源码__AWR1642___TI
    优质
    本项目为基于TI AWR1642毫米波雷达传感器开发的目标信息测量系统源代码,适用于雷达信号处理与目标检测研究。 可以在TI开发板上实现测速和测距的功能。
  • TI设计方案
    优质
    本设计参考方案专注于TI毫米波雷达技术的应用与开发,提供全面的技术支持和详细的实施指南,助力工程师快速实现高性能雷达系统。 这份资料为TI毫米波雷达系统设计提供了很好的参考方案。对于有兴趣了解毫米波雷达方案的人来说,该资料具有很高的参考价值,并能显著提升对毫米波雷达设计的理解与应用能力。
  • 电图——基于ECG R的方
    优质
    本研究介绍了一种利用心电图(ECG)R波来提取呼吸信号的新方法。通过分析和处理ECG信号中的特定模式,可以有效分离并获取呼吸活动信息,为医疗诊断提供新视角。 函数 y=edr(varargin) 定义为:y = edr(数据类型、信号、r_峰值、fs、pqoff、jpoff、增益_ecg、通道、显示)。此函数基于QRS复数下的有符号区域,从给定单导联心电图信号中计算出心电图衍生的呼吸(edr)信号。