Advertisement

基于混沌萤火虫算法的欠驱动船舶自适应迭代滑模轨迹跟踪控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种结合混沌萤火虫算法的欠驱动船舶自适应迭代滑模控制器,有效提升了船舶在复杂海况下的轨迹追踪精度和鲁棒性。 本段落针对欠驱动船舶的路径跟踪控制问题,在面对模型参数不确定性和未知海洋环境扰动的情况下,提出了一种神经元自适应迭代滑模控制策略。相比传统的路径跟踪控制方法,轨迹跟踪控制需要利用舵力矩与螺旋桨推进力使笛卡尔坐标系中的横向和纵向位置误差收敛到零,并且期望轨迹是一个时间函数的表达形式,因此其问题解决起来更为复杂。 本研究通过参考欠驱动船舶在轨迹追踪过程中的横向及纵向误差信息来构建二阶滑模面和四阶滑模面。结合Lyapunov稳定性条件的设计理念,我们设计了螺旋桨转速控制器以及舵机角度控制器。为了进一步优化控制参数的设定,本段落还引入了萤火虫算法与混沌算法相结合的方法来进行寻优处理,并最终提出了一种基于混沌萤火虫算法的欠驱动船舶轨迹跟踪自适应迭代滑模控制器方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究提出了一种结合混沌萤火虫算法的欠驱动船舶自适应迭代滑模控制器,有效提升了船舶在复杂海况下的轨迹追踪精度和鲁棒性。 本段落针对欠驱动船舶的路径跟踪控制问题,在面对模型参数不确定性和未知海洋环境扰动的情况下,提出了一种神经元自适应迭代滑模控制策略。相比传统的路径跟踪控制方法,轨迹跟踪控制需要利用舵力矩与螺旋桨推进力使笛卡尔坐标系中的横向和纵向位置误差收敛到零,并且期望轨迹是一个时间函数的表达形式,因此其问题解决起来更为复杂。 本研究通过参考欠驱动船舶在轨迹追踪过程中的横向及纵向误差信息来构建二阶滑模面和四阶滑模面。结合Lyapunov稳定性条件的设计理念,我们设计了螺旋桨转速控制器以及舵机角度控制器。为了进一步优化控制参数的设定,本段落还引入了萤火虫算法与混沌算法相结合的方法来进行寻优处理,并最终提出了一种基于混沌萤火虫算法的欠驱动船舶轨迹跟踪自适应迭代滑模控制器方案。
  • 带有扰补偿
    优质
    本研究提出了一种基于扰动补偿和自适应滑模控制策略,用于改善欠驱动船舶在复杂海况下的精确轨迹跟踪性能。通过理论分析与仿真验证,展示了该方法的有效性和鲁棒性。 近年来,随着欠驱动系统控制技术的快速发展以及船舶智能化要求的不断提高,对欠驱动船舶控制问题的研究越来越受到关注。本课题结合backstepping设计方法、滑模控制算法、参数自适应方法、动态面控制技术和神经网络等先进理论,探讨了在外界环境干扰、模型不确定性和速度不可测情况下的欠驱动船舶轨迹跟踪状态反馈与输出反馈自适应滑模控制策略。 首先,假设已知船舶模型,在考虑干扰界值是否明确的情况下研究其轨迹追踪问题。对于外界环境干扰界值已知的情况,通过结合backstepping设计方法和滑模控制算法来制定出一套船舶轨迹追踪的滑模控制器;进一步地,当外界环境干扰界的确定性未知时,则引入带有σ-修正参数自适应律以估算该界限,并利用双曲正切函数解决由符号函数带来的“抖振”问题。 其次,在面临模型不确定性及未知外部扰动的情况下,通过结合动态面控制技术、自适应神经网络、滑模控制算法和backstepping设计方法来制定一种基于神经网络的船舶轨迹追踪自适应滑模控制器。此研究不仅提供了相关文献资料的支持,并且也包含了可以直接运行的matlab程序供参考使用。
  • 神经网络与态面
    优质
    本研究提出了一种结合神经网络和动态表面技术的自适应滑模控制器,有效解决了欠驱动船舶在复杂海况下的精确轨迹跟踪问题。 本段落研究了在已知船舶模型前提下不同干扰条件下的轨迹跟踪问题。首先,在外界环境干扰界已知的情况下,结合backstepping设计方法与滑模控制算法,提出了船舶轨迹跟踪的滑模控制律。 其次,针对存在不确定性和未知外部扰动的情况,采用动态面技术、自适应神经网络和滑模控制等手段相结合的方法来实现船舶轨迹追踪。为解决由此带来的“维数灾难”问题以及对虚拟控制器微分操作造成的复杂性增加的问题,提出了一种结合最小参数学习法与动态面控制的欠驱动船舶轨迹跟踪自适应滑模控制律。 最后,在实际应用中,由于难以直接测量船速的情况,设计了非线性观测器来估计船速,并在此基础上利用动态面技术避免对虚拟控制器进行微分操作。从而提出了一种基于非线性观测器和动态面的欠驱动船舶轨迹跟踪自适应滑模输出反馈控制律。 文中提供的资源包括相关文献及MATLAB仿真程序,仅供参考使用。
  • trackkeeping.rar__航_MATLAB
    优质
    本资源为一款针对欠驱动船舶设计的航迹控制系统,采用MATLAB进行开发与仿真。系统旨在实现复杂海况下的精确路径追踪,适用于学术研究和工程应用。 船舶航迹控制属于典型的欠驱动控制问题,在这一领域内,“轨迹跟踪”是一个关键的研究方向。
  • Lyapunov稳定性理论路径
    优质
    本研究提出了一种结合Lyapunov稳定性理论与自适应迭代滑模技术的创新方法,专门针对欠驱动船舶进行路径跟踪控制。该方案有效解决了此类船只在动态环境中的机动性问题,实现了更加精准和稳定的航行轨迹调整,为海洋运输及海上作业提供了可靠的技术支持。 本段落提供了相关文献及MATLAB仿真程序供参考,并设计了一种欠驱动船舶的神经网络自适应迭代滑模航向控制器,在部分模型不确定性和外界海况未知的情况下实现了航向控制目标。接下来,基于这些条件,本章将解决欠驱动船舶路径跟踪的问题。由于受风浪流等海洋环境干扰后会产生横向漂移,船首需要以一定角度与计划航线保持一致;否则在缺少有效控制措施时,经扰动后的欠驱动船舶的路径跟踪结果会出现稳态误差。 为此,结合Lyapunov稳定性条件的思想,并采用Adaline单神经元和最小二乘法提出了一种新的自适应迭代滑模控制器。通过MATLAB仿真验证了该控制器的有效性。
  • Lyapunov稳定性航向
    优质
    本研究提出了一种基于Lyapunov稳定性理论的欠驱动船舶航向控制策略,采用自适应迭代滑模控制技术,有效提升船舶在复杂海况下的航行性能和操控精度。 本段落提供的资源包括相关研究文献及对应的MATLAB仿真程序供参考使用。论文提出了一种二阶迭代滑模面的设计方法,将航向偏差的稳定问题转化为对滑模面的控制,并基于Lyapunov理论推导了系统渐近稳定的条件,从而得到相应的航向控制律。由于该控制律中包含未知外界干扰和系统不确定因素的影响,文中设计了两种不同的控制策略来应对这些问题。 第一种方法是通过不考虑这些不确定因素的情况下初步构建一个简单的控制规则,并进一步推导出等效的迭代滑模控制器。这种方案的优点在于其参数较少且算法处理相对简便。 第二种方法则引入径向基函数(RBF)神经网络技术,用于逼近系统中的不确定性部分;同时采用自适应控制策略来估计未知外界干扰的影响范围。该方法可以有效应对模型不确定性和海况扰动等因素对控制系统性能的负面影响。
  • chap2.rar____
    优质
    本资源为chap2.rar,包含有关滑模轨迹及轨迹跟踪控制的研究内容,重点介绍了滑模方法在实现精确轨迹跟踪中的应用。 基于滑模控制的机器人的轨迹跟踪控制仿真实验研究
  • 带有扰观测器态面.zip
    优质
    本研究探讨了一种基于扰动观测器和自适应动态面技术的滑模控制策略,用于提高全驱船舶在复杂海况下的轨迹跟踪性能。 本程序基于MATLAB实现无人船(水下机器人)的轨迹跟踪控制。考虑干扰因素,设计了扰动观测器进行观测,并利用自适应DSC滑模方法设计鲁棒控制器。
  • BacksteppingAUV三维
    优质
    本研究提出了一种基于自适应Backstepping方法的欠驱动自主水下车辆(AUV)三维轨迹跟踪控制策略,旨在提升其在复杂海洋环境下的航行性能和稳定性。 为了实现欠驱动自治水下机器人(AUV)的三维航迹跟踪控制,基于非完整系统理论分析了在缺少横向推进器的情况下AUV欠驱动控制系统的特点,并验证了该情况下存在加速度约束不可积性问题。利用李亚普诺夫稳定性理论和自适应Backstepping方法设计了一个连续时变的航迹点跟踪控制器,以减少外界海流对控制效果的影响。通过仿真实验表明,所提出的控制器能够使欠驱动AUV实现对于一系列三维航迹点的渐近稳定,并且该系统的精确性和鲁棒性明显优于传统的PID控制系统。
  • -MATLAB程序
    优质
    本项目通过MATLAB编写算法,实现对船舶航行路径的有效规划与精确跟踪。代码模拟了多种海况下航迹调整策略,为海上导航提供技术支持。 本段落使用MATLAB-Simulink进行仿真,并采用了两种简单的控制算法。仿真过程中加入了不确定干扰因素,研究的是典型的欠驱动控制系统问题。