Advertisement

TPS54331DDAR开关电源5V电路图及PCB布局参考设计已验证有效

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供经过验证有效的TPS54331DDAR芯片5V输出开关电源电路图和PCB布局参考设计,适用于快速高效地进行电路开发与调试。 TPS54331DDAR开关电源5V原理图及PCB带库参考布局已亲测可用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • TPS54331DDAR5VPCB
    优质
    本资源提供经过验证有效的TPS54331DDAR芯片5V输出开关电源电路图和PCB布局参考设计,适用于快速高效地进行电路开发与调试。 TPS54331DDAR开关电源5V原理图及PCB带库参考布局已亲测可用。
  • TX413912VPCB
    优质
    本资源提供经过验证有效的TX4139开关电源12V电路设计方案,包含详细的电路图和PCB布局参考,适用于电力电子设计与开发。 TX4139开关电源12V原理图及PCB带库参考布局已亲测可用。
  • 12V 15W PCB-方案
    优质
    本项目专注于12V 15W开关电源的设计与优化,涵盖详细的电路方案和高效PCB布局技巧,旨在提高电源效率与稳定性。 本款工业级开关电源经过了多种测试(包括高低温、PF值、纹波、效率及各种保护电路的安规),其最大输出电压为12V,功率可达15W。该产品采用L6562+PF103芯片设计,其中L6562是一种改良版的功率因数修正器,具有以下主要特性:可调输出电压精度高、启动电流微小且电源电流低、内置电流检测滤波器及内部启动定时器。附件包含使用AD绘制的开关电源原理图和PCB图供有需要的人参考。
  • PCB线原理资料.zip
    优质
    本资料为《开关电源PCB布局布线及电路原理》压缩包,内含详细讲解开关电源设计中PCB布局与布线技巧、常见电路工作原理等内容,适合电子工程师参考学习。 开关电源PCB布局布线.zip包含程序资料及开关电源设计电路原理资料。此资源适用于个人学习和技术项目参考、学生毕业设计项目参考以及小团队开发项目的技术参考。
  • B628锂池升压至5V、9VPCB(PW5328B)
    优质
    本资料提供了一种基于PW5328B芯片的电路设计方案,用于将B628锂电池电压升压至稳定的5V和9V输出,并详细展示了电路图与PCB布局。 B628升压电路:输入电压范围为3-4.2V,输出5V 1A;另一配置下输入电压同样为3-4.2V,但输出9V 0.6A。关于B628的PCB布局建议,请参考PW5328B芯片的相关资料和设计指南。电路板上应标注“B628”字样以示区分。
  • WiFi模块外应用PCB
    优质
    本书为工程师提供详细的WiFi模块在外设应用中的PCB布局设计指导,涵盖多种应用场景和实用技巧,帮助读者优化信号质量和产品性能。 针对邮票孔LGA封装的WiFi模块,外围电路的走线布局对产品的性能有着重要影响。选择合适的模块并进行良好的布线设计显得至关重要。分享一些关于WiFi模块外围应用电路硬件设计PCB Layout的参考建议,这将有助于集成设计,并提升整体性能和可靠性。
  • 基于STM32F334的BuckPCB
    优质
    本项目介绍了一种基于STM32F334微控制器设计的降压型(Buck)开关电源PCB布局方案,适用于高效能、低功耗的应用场景。 基于STM32F334的Buck电路PCB版图设计已经完成,并已制作出实物。
  • -5VPCB.rar
    优质
    本资源包含设计和优化5V电源电路的相关资料及PCB布局技巧,适合电子工程爱好者和技术人员参考学习。 该模块采用5430芯片设计,输入电压为正5V,并能稳定输出负5V直流电源。资源包括完整的电路图及PCB打包文件,是电子竞赛中的必备组件。经过亲测证明其有效且可靠。
  • Arduino UNOPCB
    优质
    本资源提供Arduino UNO开发板详尽的电路原理图和PCB布局设计文件,适合电子爱好者与工程师进行学习、参考或自制开发板使用。 本段落分享了使用Altium designer软件绘制的Arduino UNO最小系统电路原理图及PCB图,并确认这些设计是可实际使用的。可以直接通过嘉立创进行打板制作。
  • PCB线准则技巧
    优质
    本文章深入探讨了设计高效能开关电源时的印刷电路板(PCB)布局和走线的最佳实践和技术,旨在帮助工程师优化电磁兼容性、减小噪声干扰并提高整体系统性能。 开关电源是一种重要的电力电子技术,在现代电子产品中有广泛应用。它的主要功能是进行电压转换(包括升压和降压),其名称来源于电路中的三极管频繁切换“开”与“关”的状态,形成高频振荡来实现电能的高效转换。这种技术的优点在于高效率、良好的稳定性和小巧体积,但也存在功率相对较小及可能产生高频干扰的问题。 在设计开关电源PCB时,有以下几项重要原则和技巧: 1. **大电流路径优化**:确保电流流动路径尽量直且短以减少电阻造成的损耗,并适当增加走线宽度来降低压降。 2. **铜皮走线均匀性**:避免突然的宽窄变化,防止电磁辐射和瞬态电压问题;同时避免狭长的高电流线路设计,以防热应力集中。 3. **反激电源漏感管理**:准确计算并控制变压器漏感能优化反射电压大小。 4. **铝基板应用**:利用其良好的导热性能降低发热元件温度,提高稳定性和使用寿命。 5. **多层印制板的应用**:在复杂设计中提供更好的布线灵活性和信号隔离,有助于减少干扰、提升电路表现。 6. **模拟与数字线路分离及核心保护**:将两者分开,并特别注意对关键部分的保护措施;电源地线应形成环路,以提高抗干扰能力。 7. **元件布局优化**:避免敏感组件靠近板边缘,防止空气放电现象的发生;同时根据制造工艺和元器件特性设定合适的线路间距(例如双面板0.3mm, 单面板0.5mm)。 8. **滤波与隔离措施加强**:通过增加滤波电路减少噪声,并在必要时采用DC-DC或光电隔离技术,提高抗干扰能力。 9. **变压器和电感选择优化**:根据输出功率及电压需求精准选型;同时注意漏感能对效率和稳定性造成的影响。 10. **散热设计改善**:确保发热元件远离电解电容,并保持适当间距以促进良好散热条件,从而延长电源使用寿命。 以上内容涵盖了开关电源PCB设计中的核心知识点,在具体应用时还需结合实际情况进行详细计算与优化。