Advertisement

完成的智能电动小型汽车论文。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该资料旨在作为毕业设计论文的参考,其中包含着相当程度的详尽阐述,我们期盼它能对所有读者有所裨益。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 设计与实现(毕设
    优质
    本论文详细探讨并实现了基于电动驱动和智能控制技术的小型车辆的设计与制作。通过理论研究及实践操作相结合的方式,开发了一款具备自主导航、障碍物检测等功能的电动智能小车,旨在为未来智能交通领域提供新的解决方案和技术支持。 该资料为毕业设计论文,内容讲解非常详细,希望对大家有所帮助。
  • ),非常值得一读.doc
    优质
    本论文深入探讨了电动智能小车的设计与实现,涵盖了机械结构、电子控制及人工智能算法等多个方面,极具参考价值。 80C51单片机是一款八位单片机,因其易用性和多功能性而受到广泛好评。本段落介绍如何使用80C51单片机实现长春工业大学的毕业设计项目,该项目结合科研项目确定了具体的设计课题。 本系统以满足题目要求为目标,采用80C51单片机作为核心控制器,并利用超声波传感器检测道路上障碍物,控制电动小汽车自动避障、调节行驶速度以及停车。此外,该系统还能够记录时间和里程信息,具备寻迹和寻光功能。整个系统的电路结构简单且可靠性高。 通过实验测试表明,本设计符合预期要求。本段落重点介绍了硬件设计方案及测试结果分析,并采用了以下主要技术:(1)编程控制小车速度;(2)有效利用传感器;(3)使用新型显示芯片。
  • 整版寻迹
    优质
    本论文详细探讨了设计与实现一款具备自主导航功能的智能寻迹小车的过程。通过集成传感器技术、路径规划算法及控制系统,该小车能够有效识别并跟踪特定路线行驶,适应复杂环境变化,为自动化领域的应用提供了创新解决方案。 本寻迹小车采用有机玻璃作为车架,并以ATmage32L单片机为核心控制单元,结合直流电机、光电传感器及电源电路等构成。系统通过ATmage32的IO口来操控小车的前进、后退和转向动作。其中,RPR220型光电对管负责执行寻迹功能。
  • 系统嵌入式ARM设计-
    优质
    本论文探讨了在电动汽车智能充电系统中采用ARM架构进行嵌入式设计的方法与优势,旨在提升充电效率及用户体验。 在当今社会,电动汽车(EV)作为新能源汽车的重要组成部分,其发展速度迅猛。然而,电动汽车的使用和普及面临着电池充电速度缓慢、充电安全性和稳定性不足等问题。本研究旨在通过采用嵌入式ARM架构设计智能充电系统来解决这些问题。 ARM架构是一种广泛应用于嵌入式系统的处理器架构,具有低功耗、高性能及成本效益等特点。在电动汽车的充电系统中,嵌入式ARM处理器作为核心组件可以实时监测和控制电池的充电过程,提升充电系统的智能化水平。 该电动汽车智能充电系统包括硬件设计和软件设计两个方面。硬件设计部分以LPC2138 ARM处理器为核心,并连接了充电电路、检测电路、通信模块、LCD触摸屏、数据存储模块以及参数检测模块等组件。在软件层面,系统实现了电池状态监测、智能控制算法、人机交互界面及故障诊断与保护策略等功能。 该系统的目的是实现快速且安全的电池充电过程,在短时间内完成对蓄电池的智能化充电,并实时监控电池电压、电流和温度等数据。当发现异常情况时,ARM处理器会处理采集到的信息并及时响应,自动切断电源以确保安全性。 此外,车主可以通过触摸屏设置充电时间、电压及电流参数实现个性化操作。智能系统还配备了声光报警模块,在检测到问题后启动警报提醒用户和维护人员注意安全。 技术上,LPC2138 ARM处理器具有丰富的外设接口支持硬件组件间的通信与控制功能;同时其通信模块可连接外部设备或网络以提供远程监控能力。数据存储部分记录充电过程中的信息为后续分析及故障排查提供了便利条件。 “十三五”期间国家科技计划大力支持电动汽车技术的发展,目标是到2020年使我国新能源汽车的产业化和市场规模达到世界第一水平。因此构建快速、安全且智能的电动汽车充电系统对推动该领域发展具有重要意义。 综上所述,基于嵌入式ARM架构设计的电动汽车智能充电系统具备以下优点: 1. 缩短了电池充电所需的时间并提高了效率; 2. 实时监控电池状态以保障安全性; 3. 提供用户友好的操作界面增强体验感; 4. 支持远程管理和维护功能; 5. 根据具体情况进行最优化的充电策略。 随着电动汽车市场的持续扩大以及技术的进步,此类智能充电系统将在未来新能源汽车领域扮演越来越重要的角色,并对整个行业产生深远影响。
  • SmartEVSE:
    优质
    SmartEVSE是一款专为电动汽车设计的智能充电解决方案。它通过先进的技术提供便捷、高效的充电体验,并支持远程监控和管理功能。 智能EVSE(Electric Vehicle Supply Equipment)电动汽车充电站是一种先进的设备,用于为电动车提供安全、便捷的充电服务。SmartEVSE是这种设备的一个实例,它采用C语言进行编程,这表明其软件部分可能注重效率和资源管理,因为C语言常用于系统级和嵌入式开发。 在描述中提到的SmartEVSE v1是该设备早期版本,而当前的工作重点在于v2版本。通常这意味着开发者已经对产品进行了改进优化,包括提升性能、增加新功能、改善用户体验或解决已知问题。随着不断发展的电动汽车市场和技术进步,他们可能采用了更现代的设计理念。 SmartEVSE v1包含以下关键组件和功能: 1. **控制单元**:作为系统中枢处理充电请求、监控过程执行安全检查并与其他设备通信。 2. **电源管理**:智能调节输入电源以确保充电电流稳定且符合电动车电池需求。 3. **通信协议支持**:如OCPP(开放充电桩通讯协议),使充电站能与电动汽车、电网和网络进行有效沟通。 4. **安全保障机制**:包括过载保护、短路防护等功能,保障用户及设备安全。 5. **用户界面设计**:可能包含LED指示灯或触摸屏等组件以显示状态信息并操作充电站。 6. **远程监控与管理功能**:允许通过网络进行故障诊断和配置更改。 SmartEVSE v2的改进可能涉及以下方面: 1. **通信能力增强**:支持新型通讯协议如Wi-Fi、蓝牙,提高数据传输速度及可靠性。 2. **智能化升级**:利用大数据和人工智能技术预测充电需求优化策略减少电网压力。 3. **能源效率提升**:通过更高效的算法设计降低能耗实现绿色节能目标。 4. **用户体验改善**:提供直观操作流程丰富信息显示增强用户友好度。 5. **扩展性支持**:兼容更多第三方设备和服务集成,如智能家居系统或电动车制造商特定应用。 从项目文件名smartevse-master来看,这可能是项目的主分支或者源代码仓库。它通常包含所有必要的资源用于构建和理解SmartEVSE软件结构,包括源代码、编译脚本等文档资料。通过深入分析这些源码可以了解系统的具体实现方式如如何处理充电请求以及通信协议的实施细节。 在研究开发过程中对这些源码进行审查学习有助于深入了解智能EVSE的工作原理,并为未来产品改进和创新奠定基础。这对于C语言程序员及电动汽车行业技术人员来说是一个宝贵资源,帮助他们提升技能并参与到这一快速发展的领域中去。
  • 发展研究.pdf
    优质
    本论文深入探讨了智能汽车的发展趋势、关键技术及面临的挑战,旨在为行业提供理论指导与实践参考。 本段落主要探讨了智能汽车研究对提升交通安全的重要性,并回顾了发达国家在该领域的历史、发展及未来趋势。文章还提出了一种基于多传感器信息融合技术的智能汽车系统结构模型,详细阐述了各模块的功能,并简要介绍了该模型中所采用的信息融合方法。最后,提出了对未来发展的展望。
  • (XiaoChe)
    优质
    XiaoChe是一款集成了先进传感器和人工智能算法的智能小车。它能够自主导航,避开障碍物,并执行预设任务,适用于教育、娱乐及科研等多种场景。 ### 基于AT89C52单片机的智能小车设计 #### 智能小车概述 智能小车是一种融合了计算机科学、传感器技术、信息处理、通信、导航及自动控制等多学科的技术产品,能够在特定环境中自主感知并作出决策。这种车辆适用于军事、民用以及科研等多个领域。 #### 设计背景 随着科技的进步,智能小车的应用越来越广泛,在改善道路交通安全方面展现出巨大潜力。然而,目前关于智能小车的研究和应用案例还相对较少。因此开发一种能够识别线路、自动投币识别和站点停靠的智能小车具有重要的实践意义。 #### 关键技术介绍 - **AT89C52单片机**:作为核心控制部件,负责处理各种传感器传来的信息并控制执行机构的动作。 - **反射光耦**:用于检测行驶路径上的黑线,通过判断反射光的强度来确定小车是否偏离预定路径。 - **投币识别系统**:采用磁芯和光电传感器来识别金属硬币,确保用户投入正确的货币。 - **站点识别**:使用线圈感应技术实现,在接近特定站点时触发停靠程序。 - **点阵显示模块**:一个16×16的LED显示屏用于展示站名及投币金额等信息。 #### 系统硬件结构 1. **循迹模块** - 采用红外反射光耦作为传感器,通过检测黑线和白纸之间反射光的不同强度来判断小车的位置。 - 脉冲调制技术提高了抗干扰能力,避免环境因素导致的误判。 2. **驱动模块** - 使用H型PWM电路调节电机转速,并通过单片机控制H桥使其工作在占空比可调的状态下以精确控制车速。 - L298N驱动芯片被用来进一步提升电路稳定性和集成度,同时保护外围电路免受损坏。 3. **硬币识别模块和避障模块** - 硬币识别模块利用电磁波特性检测金属硬币,并通过LC谐振电路判断是否有硬币投入。 - 避障模块采用红外传感器实现前方障碍物的检测,确保小车安全行驶。 4. **停靠模块和点阵显示模块** - 停靠模块设置在站点处的金属标记与智能小车上线圈配合使用,实现自动识别和停靠。 - 点阵显示模块提供用户交互界面展示当前站点信息及投币金额等重要数据。 ### 总结 基于AT89C52单片机设计的智能小车充分利用现有传感器技术和控制算法实现了基本循迹功能、硬币识别以及站点停靠等功能,具有较高的实用价值。该设计为未来智能交通系统的发展提供了一个很好的研究平台,并有助于推动自动驾驶技术的进步。
  • 往返
    优质
    智能电动往返小车是一款结合了现代电子技术和自动化控制理念设计的小型运输工具。它能够自动完成货物在设定路线上的运送任务,不仅操作简便,而且大大提高了工作效率和安全性。这款产品适用于工厂、仓库等多种场合的内部物流管理。 自动往返电动智能小车的设计是一种简易的智能电动车方案,采用AT89S52单片机作为核心控制器来实现车辆检测与控制功能。该设计结构简单且易于实施,并具备高度智能化及人性化特点。 **一、任务目标** 本项目的主要目的是开发一款能够根据特定需求自主行驶的智能电动车。其基本要求涵盖分区导航能力,自动记录并显示行驶时间、距离和速度等功能;同时还能追踪每段行程所需的时间,以确保符合课程设计的标准。 **二、设计方案** 该方案由多个关键组件构成:路面检测模块使用铁片感应器TL-Q5MC来感知路面上的金属标记并向单片机发送中断信号。显示界面则采用1602LCD液晶屏,并通过总线连接至微控制器;速度测量利用霍尔效应传感器A44E监测轮子上的磁性标识。 **三、实施细节** 实现上述方案需要完成各个模块的具体设计与组装工作,包括铁片感应器的安装配置以及显示器和测速装置的选择及装配等步骤。 **四、系统架构** 整个系统的开发流程涵盖总体布局规划、各部件独立的设计任务以及时钟电路板(PCB)制作等方面的工作内容。其中总图绘制明确了各个组件之间的关系;而模块设计则深入探讨每个单独部分的技术细节;最后,通过精心的线路排布和元件放置来完成实际硬件平台构建。 **五、软件编程** 针对智能电动车的各项功能需求编写相应的控制程序是项目成功的关键环节之一。这包括但不限于单片机驱动代码开发、速度调节逻辑实现以及模式切换机制等核心模块的编码工作。 **六、未来应用展望** 凭借其出色的自主导航能力和高效的操作性能,这款电动小车有望在科学研究探索、物流配送服务及智能制造等多个领域发挥重要作用。它能够按照预设程序在一个特定环境中独立运行而无需人工干预,从而极大地提高了工作效率和灵活性。
  • 优质
    该新能源汽车完整车型模型展示了最新电动或混合动力车辆的设计理念与技术特点,涵盖内外饰细节及电池布局等信息。 新能源汽车整车模型的Simulink搭建及自动代码生成是一份不错的学习资料,涵盖了轮胎、发动机模型等内容。