Advertisement

现有的蛋白质内在无序和区域预测计算方法进行全面综述和比较。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
一份对内在无序蛋白质以及区域预测的当前计算方法的详尽总结和对比分析。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 对当前回顾与对
    优质
    本文全面回顾并对比了当前用于预测内在无序蛋白质及其区域的各种计算方法,旨在为研究者提供指导和参考。 对内在无序蛋白质及其区域预测的现有计算方法进行全面综述与比较。
  • 关于结构研究.caj
    优质
    本文针对无序蛋白质的特性,探讨并分析了现有的几种主要结构预测方法,并提出了一种新的预测模型,以提高对无规蛋白序列的理解和功能预测。 论文探讨了将信号处理领域的知识应用于生物技术中的无序蛋白质结构预测方法的研究。
  • 利用列信息间相互作用
    优质
    本研究提出了一种基于蛋白质序列的新方法,有效提升了蛋白质之间相互作用的预测准确性,为理解生命过程中的分子机制提供了有力工具。 蛋白质-蛋白质相互作用(PPI)在几乎所有细胞过程中都至关重要,包括代谢循环、DNA转录与复制以及信号级联反应。然而,用于识别这些相互作用的实验方法既耗时又成本高昂。因此,开发能够预测PPI的计算方法显得尤为重要。 本研究提出了一种仅依赖蛋白质序列信息来预测PPI的方法。该方法结合了极限学习机(ELM)这一创新的学习算法与一种新颖的局部蛋白质序列描述符表示法。这种局部描述符揭示了蛋白质序列中连续和不连续区域中的氨基酸相互作用,从而有助于从蛋白质序列中提取更多关于PPI的信息。 极限学习机是一种基于随机生成输入到隐藏单元权重并解析线性方程组以获得隐藏层至输出层的精确权值来实现快速准确分类的方法。在分析酿酒酵母(Saccharomyces cerevisiae)的PPI数据时,该方法达到了89.09%的预测精度、89.25%的灵敏度和88.96%的准确性。 通过广泛的实验比较了本研究提出的方法与现有的支持向量机(SVM)技术。结果显示,所提方法在预测PPI方面具有良好的前景,并可作为现有技术支持的有效补充手段。
  • 二级结构
    优质
    蛋白质二级结构预测是生物信息学中的重要课题,它通过分析氨基酸序列来预测蛋白质链的空间构象。此研究对于理解蛋白质功能至关重要。 通过平衡数据集可以提高蛋白质二级结构预测的准确性。
  • 利用PSI-BLAST图谱结构分类
    优质
    本研究提出了一种基于PSI-BLAST图形网络的创新方法,用于精确预测和分类蛋白质结构,为功能注释提供强有力的支持。 基于PSI-BLAST图谱的蛋白质结构分类预测方法是一种用于分析和预测蛋白质三维结构的技术。该方法利用了PSI-BLAST算法生成的序列相似性网络来识别并分类具有相同或类似折叠模式的蛋白质家族,从而帮助研究人员更好地理解蛋白质的功能与进化关系。
  • EP-GBDT:一种基于列信息必需
    优质
    简介:EP-GBDT是一种创新性的计算模型,通过利用序列信息有效预测细菌中的必需蛋白质。该方法结合梯度提升决策树算法,提升了预测准确性和效率,在生物学研究中具有重要应用价值。 乙交酯EP-GBDT是一种仅通过序列信息进行必需蛋白质预测的计算方法。使用该方法需要安装numpy版本1.18.1、scikit学习版本0.23.1以及imblearn版本0.7.0。 在GitHub项目中,我们提供了一个演示来展示如何使用EP-GBDT。原始数据文件夹包含用于必需蛋白质预测的原始蛋白质序列及其标签。此外,“加工的特征”文件夹提供了通过伪氨基酸组成(PseAAC)工具获得的处理过的蛋白质序列特征。“预测结果”文件夹则包含了基于8种中心方法得出的结果,包括原始PPI网络和每个中心方法产生的结果。 在演示中使用的data_h.pkl和data_y.pkl分别存储了由随机种子202010086生成的训练集与测试集。使用相同的随机种子可以确保您能够得到与本段落相同的研究成果。此外,我们还提供了一个名为train_main的python文件来指导如何进行操作。
  • 列对动态规划
    优质
    《蛋白质序列对比中的动态规划算法》一文深入探讨了利用动态规划技术进行蛋白质序列比对的方法,强调其在生物信息学领域的重要性。文章详细介绍了如何通过优化算法提高序列比对的速度和准确性,为研究者提供了理论基础与实践指导。 使用动态规划算法来比对蛋白质序列的Perl语言源程序可以进行如下描述:该程序采用动态规划方法实现蛋白质序列的对比分析功能,代码编写采用了Perl编程语言。
  • 二级结构:基于机器学习-SS
    优质
    本研究聚焦于利用机器学习技术提升蛋白质二级结构(SS)预测精度。通过分析和建模氨基酸序列信息,开发高效准确的预测模型,促进生物信息学领域的发展与应用。 蛋白质二级结构预测可以通过分析其氨基酸序列来进行。首先将所有氨基酸序列合并,并采用20种不同类型的氨基酸及其对应的3个或8个二级结构(分别用E、H和t表示,或者使用另外的8类)。通过滑动窗口技术,在不同的窗口大小下进行处理:例如在21和13的位置上寻找中间位置的氨基酸作为目标结构。每个窗口中的每一个氨基酸都被转换成一个热编码,并且将所有这些单个热编码连接起来形成一个21x20矩阵,这被视为一种黑白图像输入给模型。 尝试了使用CNN、RNN、LSTM或GRU进行预测,但对精度的影响不大。基准测试的结果如下: - 预测3种二级结构:准确率为73% - 预测8种二级结构:准确率为52% 该研究依赖于一些特定的库和工具,包括火狐(Torch)、大熊猫、脾气暴躁的Matplotlib 和海生scikit学习。测试是在Python 3.8.3 x64环境下进行的。 此方法可以应用于不同的数据集以提高预测精度。
  • 基于VerilogC++:冒泡排、选择排、并及串
    优质
    本项目采用Verilog与C++语言实现了四种排序算法——冒泡排序、选择排序以及两种全比较排序(并行与串行),旨在探索不同编程环境下的算法实现差异和效率。 Verilog/C++实现排序算法包括冒泡排序、选择排序、并行全比较排序和串行全比较排序。
  • 时空
    优质
    本文是一篇关于时空序列预测方法的研究综述文章。文中详细回顾了近年来在该领域中出现的关键技术和算法,并分析了其应用前景与挑战。 时空序列预测是一种重要的统计分析技术,主要用于处理包含地理位置的时间序列数据。随着物联网设备的普及和技术的发展,这类数据的数量呈指数级增长,使得时空序列预测成为当前研究的一个热点领域。 这种预测方法在许多领域都有应用背景,包括气象学、交通工程、环境科学和能源管理等。例如,在天气预报中需要对历史气象数据进行时空建模来预测未来的降雨量和风速;智能交通系统中的流量和拥堵情况可以通过该技术优化规划;环保监测则可以利用这种方法预测污染物浓度的变化。 时空序列预测的发展始于传统的统计方法,如时间序列分析及ARIMA模型等。这些传统的方法通常基于线性关系假设,适用于处理简单的非空间依赖的序列数据。然而,随着数据复杂性的增加,这类方法逐渐显得力不从心,不能充分捕捉到时空数据中的复杂关联。 随后的研究引入了机器学习技术来应对这一挑战,例如支持向量机、随机森林和梯度提升机等算法可以用于处理复杂的非线性关系及高维特征。这些模型通过学习历史数据的模式来进行预测,但是它们通常需要大量的人工特征工程,并且对异常值或未见过的数据敏感。 近年来,深度学习技术的发展为时空序列预测带来了突破性的进展。例如,深层神经网络能够自动提取复杂抽象的信息表示;卷积和循环神经网络则能有效地捕捉到时间与空间维度上的局部及全局依赖性。长短时记忆(LSTM)模型在处理长时间跨度的时间序列数据方面表现出色,并且可以解决长期依赖问题。此外,时空卷积网络结合了CNN和RNN的优点,在时间和空间两个方向上同时学习模式。 尽管深度学习方法已经在许多应用中取得了显著效果,但仍面临解释性差、需要大量计算资源以及容易过拟合等挑战。为了解决这些问题,研究人员正在探索注意力机制、知识蒸馏及模型压缩技术来提高效率和泛化能力。 未来的研究可能包括以下几个方向:开发更高效且可解释的深度学习架构以处理日益增长的数据量与复杂性;结合多模态数据如图像、文本和声音进行融合预测获取更多全面的理解;利用强化学习和元学习使模型能够自适应地调整策略;将先验知识整合进模型中提升准确性;开发实时在线更新系统应对快速变化的环境。 时空序列预测是一个跨学科领域,涵盖了统计学、机器学习及深度学习等多个方面。随着技术的进步与发展,我们期待这一领域能够产生更多创新方法来解决日益复杂的时空数据挑战。