Advertisement

水下航行器的协同导航与定位

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究聚焦于开发先进的算法和技术,以实现水下航行器之间的高效协同导航与精确定位,旨在提高作业效率和安全性。 水下航行器协同导航定位是近年来海洋工程与自动控制领域中的一个重要研究方向,在实现分布式和协作算法在海洋应用中的精确导航方面具有重要意义。博士论文《水下航行器导航系统中的观测性分析》由Aditya Gadre撰写,于2007年提交至弗吉尼亚理工大学电气工程学院作为其哲学博士学位的部分要求。该论文主要探讨了一种使自主水下航行器(AUV)能够在实时未知水流条件下计算轨迹并同时估计水流的技术,仅通过从一个已知位置获得的距离或范围测量数据实现。 ### 重要知识点: #### 协同导航定位 - 定义:协同导航定位是一种允许多个水下航行器在没有直接物理连接的情况下共享定位信息的技术,从而提高整个系统的精度和可靠性。 - 应用场景:海洋勘探、海底资源开发、环境监测、军事侦察等。 - 关键挑战: - 海洋环境复杂,包括水流、温度、盐度等自然因素对信号传输的影响; - 水下通信受限,电磁波在水中传播效率低,声学通信成为主要手段但存在时延和带宽限制; - 能量供应有限,水下航行器通常携带的能量有限,需考虑高效能量管理和协同策略。 #### 观测性分析 - 概念解释:观测性是控制系统理论中的一个重要概念,指通过系统的输出(如传感器测量值)来确定系统状态的能力。 - 作用:确保导航系统能够准确地估计水下航行器的位置、速度和姿态,以及环境参数(如水流)。 - 方法论:论文中采用了新颖的方法来分析线性时变(LTV)系统的均匀观测性,包括利用极限系统评估LTV系统的均匀观测性,并引入了在有限区间内的一致观测性的新定义以解决观测误差被指数衰减函数限制的问题。 #### 水下范围导航 - 原理:基于距离或范围测量的导航方法,利用已知位置的参考点与水下航行器之间的距离差进行定位。 - 优势:适用于小体积、低功耗的水下航行器,因为这类设备通常受到体积和能源限制; - 局限性:依赖于精确的时间同步和稳定的通信链路,在复杂海洋环境中信号传输质量可能受到影响。 #### 统一观测性与限速系统 - 统一观测性:指在所有时间间隔内系统能够保持观测能力,即使在动态变化的环境条件下也能够持续地估计状态。 - 限速系统:论文中提出通过对LTV系统的低维子系统进行观察分析可以推断出原系统的一致观察能力,这一发现简化了复杂系统观测性分析的过程。 该篇博士论文深入探讨了水下航行器协同导航定位的关键技术和理论基础,特别是观测性分析在导航设计中的应用,并为提高水下航行器未知环境下的导航能力和整体性能提供了新的视角和解决方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于开发先进的算法和技术,以实现水下航行器之间的高效协同导航与精确定位,旨在提高作业效率和安全性。 水下航行器协同导航定位是近年来海洋工程与自动控制领域中的一个重要研究方向,在实现分布式和协作算法在海洋应用中的精确导航方面具有重要意义。博士论文《水下航行器导航系统中的观测性分析》由Aditya Gadre撰写,于2007年提交至弗吉尼亚理工大学电气工程学院作为其哲学博士学位的部分要求。该论文主要探讨了一种使自主水下航行器(AUV)能够在实时未知水流条件下计算轨迹并同时估计水流的技术,仅通过从一个已知位置获得的距离或范围测量数据实现。 ### 重要知识点: #### 协同导航定位 - 定义:协同导航定位是一种允许多个水下航行器在没有直接物理连接的情况下共享定位信息的技术,从而提高整个系统的精度和可靠性。 - 应用场景:海洋勘探、海底资源开发、环境监测、军事侦察等。 - 关键挑战: - 海洋环境复杂,包括水流、温度、盐度等自然因素对信号传输的影响; - 水下通信受限,电磁波在水中传播效率低,声学通信成为主要手段但存在时延和带宽限制; - 能量供应有限,水下航行器通常携带的能量有限,需考虑高效能量管理和协同策略。 #### 观测性分析 - 概念解释:观测性是控制系统理论中的一个重要概念,指通过系统的输出(如传感器测量值)来确定系统状态的能力。 - 作用:确保导航系统能够准确地估计水下航行器的位置、速度和姿态,以及环境参数(如水流)。 - 方法论:论文中采用了新颖的方法来分析线性时变(LTV)系统的均匀观测性,包括利用极限系统评估LTV系统的均匀观测性,并引入了在有限区间内的一致观测性的新定义以解决观测误差被指数衰减函数限制的问题。 #### 水下范围导航 - 原理:基于距离或范围测量的导航方法,利用已知位置的参考点与水下航行器之间的距离差进行定位。 - 优势:适用于小体积、低功耗的水下航行器,因为这类设备通常受到体积和能源限制; - 局限性:依赖于精确的时间同步和稳定的通信链路,在复杂海洋环境中信号传输质量可能受到影响。 #### 统一观测性与限速系统 - 统一观测性:指在所有时间间隔内系统能够保持观测能力,即使在动态变化的环境条件下也能够持续地估计状态。 - 限速系统:论文中提出通过对LTV系统的低维子系统进行观察分析可以推断出原系统的一致观察能力,这一发现简化了复杂系统观测性分析的过程。 该篇博士论文深入探讨了水下航行器协同导航定位的关键技术和理论基础,特别是观测性分析在导航设计中的应用,并为提高水下航行器未知环境下的导航能力和整体性能提供了新的视角和解决方案。
  • xietong_CKF.rar_CKF_双领___CKF滤波
    优质
    本资源包包含基于CKF(中心化卡尔曼滤波)算法的双领航与协同定位、协同导航技术,重点展示了CKF滤波在复杂环境中的应用效果及优势。 基于CKF滤波的双领航AUV交替领航模式具有准确且明显的滤波效果。
  • 基于推算拖体组合技术
    优质
    本研究提出了一种结合航位推算和水声定位技术的创新方法,旨在提高水下拖体系统的导航精度和可靠性。通过优化两者数据融合,该技术能有效弥补单一导航方式的不足,在复杂海洋环境中实现精确位置跟踪与姿态控制。此方案在深海探测、资源勘探等领域具有广泛应用前景。 针对航位推算系统位置误差发散、水声定位系统输出信息波动大的特点,利用基于航位推算与水声定位系统的组合导航方法进行深拖系统的导航定位。首先通过多普勒速度仪和罗经的输出数据实施航位推算以获取拖体的位置,随后将该位置信息与水声定位系统提供的位置信息融合处理,从而获得连续且平滑的高精度深拖系统导航数据,实现对水下拖体的精确位置确定。实验应用表明,在海试过程中采用组合方法后,不仅有效限制了误差发散的趋势,还显著减少了输出数据的波动幅度,最终能够提供更为流畅和准确的位置信息。
  • EKF.zip_EKF_主从式结构_系统合作
    优质
    本项目EKF协同导航采用主从式结构,通过扩展卡尔曼滤波技术实现多传感器导航系统的高效合作定位,提升复杂环境下的定位精度与稳定性。 在IT行业中,特别是在导航系统与传感器融合领域里,扩展卡尔曼滤波(EKF)是一种广泛应用的算法,用于处理非线性系统的状态估计问题。“ekf.zip”文件中的核心主题包括EKF协同导航、主从式结构以及协同导航的概念。结合“ekf.m”文件中的MATLAB代码可以帮助我们更好地理解其工作原理。 **扩展卡尔曼滤波(EKF)** 作为卡尔曼滤波的一种延伸,EKF适用于处理非线性系统的问题。通过递归地预测和更新步骤相结合的方式,在线估计系统的状态是卡尔曼滤波的主要功能。对于非线性的环境,EKF通过近似的方法来实现这一目标:它将复杂的函数进行线性化以达到接近真实情况的效果,并据此提供最优的状态估算结果。在双艇协同导航的应用中,EKF用于整合来自多种传感器的数据(例如GPS、惯性测量单元IMU等),从而提高定位的准确性。 **双艇协同导航** 该概念指的是利用信息交换来提升多艘船只各自导航性能的过程。“ekf.zip”中的内容可能涉及两艘或更多船只使用独立但协调的方式进行EKF状态估计,并通过共享距离和其他相关量测数据以改进各自的定位精度。这种协作尤其在GPS信号弱或者存在遮挡的情况下显得尤为重要。 **主从式结构** 这是协同导航系统中常见的架构之一,其中一艘船只作为主机负责整个系统的管理与调控工作,而其他船只则根据主机的指令提供自己的观测信息。通常情况下,主机整合所有分机提供的数据进行EKF更新,并将这些经过处理的信息反馈给各分船以实现整体上的协调。 **协同导航** 这一过程强调的是通过共享信息和协作来提高整个系统的导航性能。具体到双艇场景中,每艘船只都会贡献其观测结果(如位置、速度及航向等),然后利用EKF技术进行数据融合处理,以此减少单个传感器可能存在的不确定性并增强总体的定位可靠性。 **“ekf.m”文件** 该脚本很可能是用MATLAB编写的一个EKF实现版本。在实际应用中,“ekf.m”文件可能会包含定义状态模型、观测模型以及系统和量测噪声的相关函数,同时也会包括具体的预测与更新步骤代码。通过分析这个程序可以让我们深入了解如何将EKF应用于双艇协同导航场景之中。 总而言之,“ekf.zip”的内容探讨了扩展卡尔曼滤波在多船协作定位中的应用,并涉及到了诸如非线性模型处理、数据融合技术以及主从式架构的信息交换等关键技术细节,这些对于深入理解基于EKF的导航系统至关重要。
  • 张红梅版技术
    优质
    张红梅版水下导航定位技术是针对海洋和深水环境开发的一套精准定位系统解决方案,通过集成先进的声呐技术和惯性导航系统实现高精度位置跟踪。 《水下导航定位技术》一书由张红梅编写,现已绝版。如果有需要的话可以尝试下载。
  • GNSS
    优质
    《GNSS定位与导航》是一本专注于全球导航卫星系统技术及其应用的专业书籍,深入浅出地介绍了GNSS的工作原理、信号处理以及在各个领域的实际应用。 使用C#编程读取GNSS的导航N文件和观测O文件,进行单点定位,并实现伪距单差、双差功能,精度达到1米以内。项目包含数据文件以及程序说明。
  • 技术——第二章:短基线系统(SBL)
    优质
    本章聚焦于短基线水声定位系统(SBL),探讨其原理、构成及应用,分析该技术在水下精确位置确定中的关键作用。 第二章 短基线水声定位系统(Ultra-short baseline positioning system, SBL)主要介绍了该技术的基本原理、组成结构以及在实际应用中的优势与局限性。通过分析短基线系统的特性,本章节探讨了其如何实现高精度的水下目标定位,并讨论了它在海洋科学研究、深海探测和潜艇导航等领域的广泛应用。
  • AUV_合作_
    优质
    AUV_协同导航合作_探索了多自主水下机器人系统如何通过信息交换实现高效定位与路径规划,以完成复杂水域环境下的协作任务。 仿真五种工况下AUV的定位误差: - 工况2:应答器基阵+速度传感器+角度传感器 - 工况3:AUV+AUV(重复)与速度传感器+角度传感器 (可能原文有误,这里假设是AUV和另一个AUV) - 工况4:仅使用应答器基阵 - 5:AUV+AUV(同样可能是原意为另一艘AUV)与速度传感器+角度传感器+应答器基阵
  • 基于Adams和Matlab/Simulink自主仿真*(2009年)
    优质
    本研究采用Adams与Matlab/Simulink联合建模方法,针对水下自主航行器进行协同仿真分析,探讨其运动特性及控制系统优化策略。 针对传统水下自主航行器(Autonomous Underwater Vehicle, AUV)仿真中存在的图形界面、实时性和动力学性能难以兼顾的问题,提出了一种利用虚拟样机分析软件Adams与控制仿真软件Matlab/Simulink相结合的方法来建立AUV的虚拟样机系统。基于对运动学、动力学和水动力数学模型的分析,详细阐述了物理模型及控制模型的构建过程,并通过该虚拟样机系统对设计的空间动态定位控制算法进行了基于动力学基础的动力仿真测试。实验结果显示,此方法能够实现智能控制与动态控制的有效交互演示。
  • 声通讯海洋方案.pdf
    优质
    本pdf深入探讨了水声通信技术及其在现代海洋定位和导航系统中的应用,提供了创新性的解决方案和技术细节。 水声通信、海洋通信以及海洋定位导航解决方案是当前研究的重要领域。此外,潜水员在水下的有效沟通也是一个关键问题。