
光谱分析原理概述
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
《光谱分析原理概述》是一篇介绍通过观察和解析物质发射、吸收或散射光线时形成的光谱来确定其组成成分及结构特性的基础知识文章。
光电直读光谱分析所使用的元素波长主要集中在真空紫外区和近紫外区。我们通常提到的光谱是指光学光谱,这种光谱可以通过加热物质(固体、液体或气体)或者使用光线或电流激发来获得三种类型的光谱:线状光谱、带状光谱以及连续光谱。
线状光谱是由气态原子或离子在受到激发后产生的分立的线条组成的。根据其产生方式,可以分为发射光谱(明线)和吸收光谱(暗线)。因此,光谱分析也可以被划分为发射光谱分析和原子吸收光谱分析两种类型。
如果由原子激发生成的是原子光谱;而离子激发则会产生离子光谱。带状光谱则是从分子中发出的或者是由两个以上原子结合形成的集团产生的,这种类型的光线通常呈现为连续或不规则分布的形式,并且属于分子光谱的一种。例如,在使用碳电极进行分析时,高温下碳与空气中的氮气反应生成氰化物(CN)分子;当这些分子受到激发后会产生特定的光谱线,称为氰带。
连续光谱是从白炽固体中发出的光线集合体,并且包含了无限数量的不同波长。在常规的应用场景下,“原子发射光谱分析”是最常见的类型之一。光电直读光谱仪所使用的元素波长主要涉及这些元素的原子和离子特征线。
目前,市场上主流的光电光谱仪器可以分为两大类:非真空型和真空型。非真空型设备的工作范围集中在近紫外区与可见光线区域;而采用真空设计的技术则能够覆盖到远紫外线120.0纳米波段,并且利用这一范围内氮、碳、磷及硫等元素的高灵敏度谱线来进行钢铁中关键成分的分析。
全部评论 (0)
还没有任何评论哟~


