
MOS管损坏的原因是什么
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本文将探讨导致金属氧化物半导体场效应晶体管(MOS管)损坏的各种原因,包括过压、静电放电和过度发热等。
在控制器电路中,MOS的工作状态包括开通过程(从截止到导通的过渡过程)、导通状态、关断过程(由导通转为截止的过程)以及截止状态。对应这些工作状态下产生的损耗主要包括开关损耗(即开通过程和关断过程中发生的能量损失),导通损耗及由于漏电流引起的微小能耗可忽略不计,还有雪崩能量耗损。只要将上述所有类型的损耗控制在MOS器件的承受范围内,该器件就能正常运行;反之,则可能导致损坏。
其中开关损耗通常大于导通状态下的损耗,并且不同型号的MOS管之间这一差距可能很大。导致MOS管损坏的主要因素包括过流(持续的大电流或瞬间超大电流引起的结温过高而烧毁)、过压(源漏电压过大引起击穿或者源栅极间电压过大引发故障)以及静电冲击。
当向MOS器件的栅极端施加适当电压时,它会在其内部形成一个导电通道。这个通道内的电阻称为内阻或导通电阻,它的大小直接影响到该芯片能够承载的最大电流(同时也与热阻等因素相关)。内阻越小,则允许通过的大电流也越大。
然而,MOS管的栅极和源级之间、源级和漏级之间以及栅极和漏级之间的内部等效电容使得其工作原理更为复杂。这些电容并非独立存在而是相互影响组成的串并联组合结构。其中的关键在于栅-漏间的“米勒”电容器,它会显著地制约着MOS管从截止到导通的转换过程。
在开通过程中,先对栅极和源级之间的Cgs进行充电直至其电压达到一定平台值后才会继续为栅-漏间(即米勒)电容Cd-g充电。此时由于内部电阻变化导致电流急剧增加,在此阶段很容易引发强烈的“米勒震荡”。这不仅会消耗大量能量,还可能导致MOS管损坏。
为了防止这种现象的发生,可以通过在栅极加装额外的电容器来减缓整个导通过程的速度从而减少米勒平台效应。然而这样做虽然能够降低振荡风险但同时也增加了开关损耗,并且延长了过渡时间导致整体效率下降。
在整个开通过程中,MOS管源级和漏级之间的等效电阻从一个非常高的阻值快速变化至接近于零的状态(即导通内阻)。例如对于最大电流为100A、电池电压96V的系统,在刚进入米勒平台时产生的热量功率高达9.6KW,而完全导通后则降至30W左右。如果过渡时间过长,则会导致MOS管结温升高并最终损坏。
因此为了确保安全运行,需要通过限制最大电流或降低电池电压来减少开关过程中的发热损耗。高压系统更容易发生此类问题是因为它们的开关损耗直接与端口电压成比例增加(假设限流相同),而导通损耗则完全取决于MOS管本身的内阻大小不受外界供电影响。
总之,在设计驱动电路时,设计师需要综合考虑布线技巧以找到合适的平衡点来优化性能。通常建议将开通过程控制在1微秒以内,并且选择低电阻值的MOS器件可以进一步降低导通损耗从而提高效率。
全部评论 (0)


