Advertisement

矩阵计算公式大全

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《矩阵计算公式大全》汇集了线性代数中各类矩阵运算的核心公式和技巧,适用于学生、教师及科研人员参考学习。 这里有3个英文版的PDF文件,包含了矩阵相关的常用和不常用公式,非常适合理工科研使用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《矩阵计算公式大全》汇集了线性代数中各类矩阵运算的核心公式和技巧,适用于学生、教师及科研人员参考学习。 这里有3个英文版的PDF文件,包含了矩阵相关的常用和不常用公式,非常适合理工科研使用。
  • Spc(超)
    优质
    Spc计算公式大全是一份全面详尽的手册,汇集了各类统计过程控制所需的计算公式,旨在帮助工程师和质量管理人员轻松掌握SPC的核心知识与技巧。 使用SPC应用计算公式可以在这份文档中获取到很多关于SPC的知识。
  • 汇总表
    优质
    《矩阵公式汇总表》是一份全面总结了线性代数中各种矩阵运算和性质的表格,涵盖行列式、特征值等核心概念,适合学生及研究人员参考使用。 矩阵公式大全包含了研究生阶段常用的许多矩阵公式,便于查阅。
  • 司财务.doc
    优质
    本文档《公司财务计算公式大全》汇集了企业财务管理中常用的各类财务比率、成本费用及利润分析等核心公式的详细解释与应用案例,旨在帮助财务人员快速掌握和运用各种财务工具进行高效的数据处理和决策支持。 公司金融计算公式汇总.doc这份文档包含了多种常用的公司金融计算公式,适用于财务分析、投资决策等多个方面。文件内容详细且实用,可以帮助读者更好地理解和应用各种金融工具与方法。
  • MATLAB与程序设基础:求导
    优质
    《MATLAB计算与程序设计基础:矩阵求导公式》一书深入浅出地介绍了如何利用MATLAB进行矩阵运算及编程,并专门讲解了矩阵求导的相关理论和实践技巧。 这段文字描述的内容是关于MATLAB计算、程序设计入门以及矩阵求导公式的PPT课件,非常实用。
  • 的行列
    优质
    计算矩阵的行列式是指确定一个方阵中行与列线性相关的程度的方法,其结果是一个标量值,用来判断该矩阵是否可逆。 矩阵求行列式的C语言实现方法是将矩阵化为上三角阵后求对角线元素的乘积。
  • 行列
    优质
    简介:矩阵行列式计算器是一款功能强大的数学工具软件,能够快速准确地计算各类矩阵的行列式值,适用于学习和工作中的各种需求。 使用上三角方法编写的VB版本行列式代码仅支持最高6阶的计算。若需计算更高阶的行列式,在代码中可以自行调整(将相关的数字6改为所需的n)。
  • Z、Y、A、S和T的定义、推导与转换
    优质
    本文探讨了Z矩阵、Y矩阵、A矩阵、S矩阵及T矩阵的核心概念,并详细阐述了它们之间的推导过程和转换公式,为深入理解这些数学工具提供了理论支持。 ### 微波网络中的参数矩阵定义、推导及其转换 #### 一、Z 矩阵(阻抗矩阵) 在微波工程领域中,二端口网络是非常重要的组成部分。为了方便分析与计算,引入了不同的参数矩阵来描述这些网络的行为。首先介绍的是**Z 矩阵**。 **定义:** Z 矩阵用于描述端口电压和电流之间的关系。对于一个二端口网络,假设其两个端口的电压分别为 \(U_1\) 和 \(U_2\),对应的电流分别为 \(I_1\) 和 \(I_2\) ,则可以定义 Z 矩阵如下: \[ \begin{align*} U_1 &= Z_{11} I_1 + Z_{12} I_2 \\ U_2 &= Z_{21} I_1 + Z_{22} I_2 \end{align*} \] 或者用矩阵形式表示为: \[ \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \] **特殊性质:** - **对于互易网络**: \(Z_{12}=Z_{21}\) - **对于对称网络**: \(Z_{11} = Z_{22}\) - **对于无耗网络**: 每个元素都可以表示为纯虚数,即 \(Z_{ij} = jX_{ij}\),其中 \(X_{ij}\) 为实数。 **归一化阻抗矩阵:** 为了进一步简化计算,通常会定义归一化的电压和电流以及相应的归一化阻抗矩阵。设归一化电压和电流分别为 \(u\) 和 \(i\) ,则它们与未归一化的电压和电流之间的关系为: \[ \begin{align*} u &= \frac{U}{Z_0} \\ i &= \frac{I}{Z_0} \end{align*} \] 其中,\(Z_0\) 为参考阻抗。由此可以得到归一化的 Z 矩阵为: \[ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} \] 这里的 \(z_{ij}\) 是归一化后的阻抗矩阵元素。 #### 二、Y 矩阵(导纳矩阵) **定义:** Y 矩阵是用来描述端口电流和电压之间关系的。对于一个二端口网络,Y 矩阵可以定义为: \[ \begin{align*} I_1 &= Y_{11} U_1 + Y_{12} U_2 \\ I_2 &= Y_{21} U_1 + Y_{22} U_2 \end{align*} \] 或者用矩阵形式表示为: \[ \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \] **特殊性质:** - **对于互易网络**: \(Y_{12}=Y_{21}\) - **对于对称网络**: \(Y_{11} = Y_{22}\) - **对于无耗网络**: 每个元素都是纯虚数,即 \(Y_{ij} = jB_{ij}\),其中 \(B_{ij}\) 为实数。 **归一化导纳矩阵:** 同样地,可以定义归一化的电压和电流,并据此定义归一化的导纳矩阵。设归一化电压和电流分别为 \(u\) 和 \(i\) ,则有: \[ \begin{align*} u &= \frac{U}{Z_0} \\ i &= \frac{I}{Z_0} \end{align*} \] 归一化的 Y 矩阵为: \[ \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y
  • C#中的:MatrixCalculate.cs
    优质
    MatrixCalculate.cs提供了全面且高效的矩阵运算功能,适用于各种数学和工程计算场景。该文件实现了加减乘除、转置及行列式等核心算法。 该文件包含了多种数组运算代码,使用C#语言编写。其中包括矩阵的转置、求逆矩阵、两个矩阵相乘、相加和相减的功能;构造单位对角矩阵以及判断两矩阵是否相等的方法;托伯利兹矩阵逆的埃兰特方法;通过全选主元高斯消去法来计算行列式的值及求解矩阵秩;还包括针对对称正定矩阵进行乔里斯基分解并求得其行列式。
  • 的归纳总结
    优质
    本文章全面梳理并归纳了各类基础及高级矩阵公式,旨在帮助学习者系统地理解和掌握线性代数中的核心概念与计算技巧。 矩阵是数学中的一个重要概念,在机器学习与人工智能领域有着广泛的应用。本段落总结了一些常用的矩阵公式,这些内容对于研究相关领域的科研人员、工程师以及学生在阅读论文或进行实际工作时非常有帮助。 首先来看矩阵求逆的更新规则。在机器学习中,经常需要更新参数或者对矩阵执行操作,这时就需要用到矩阵的求逆方法。Neumann级数(也称作无穷级数)提供了一种特定条件下计算逆矩阵的方法:(I+A)^-1=I-A+A^2-A^3+... ,这个公式成立的前提是A的所有特征值绝对值小于1。这种性质在迭代优化过程中非常有用。 接下来介绍的是Sherman-Morrison公式,即所谓的矩阵求逆引理。当矩阵A经过修正后,其求逆可以通过原矩阵的逆加上适当的调整来完成。具体表达式为(A+BCD)^-1=A^-1-A^-1B(C^-1+DA^-1B)^-1DA^-1 。若D等于B的转置,则得到一个特殊形式:(A+BCB^T)^-1=A^-1-A^-1B(C+B^TA^-1B)^-1B^TA^-1 ,这被称为Woodbury恒等式。在机器学习中,Woodbury恒等式常用于大规模矩阵求逆的近似计算。 关于行列式的性质,如果AB是可逆的,则行列式满足det(AB)=det(A)det(B),这是行列式乘积规则的应用体现。另外,在单位阵基础上加上一个矩阵后,其行列式的变化可以用公式表示为:det(Ir+AB)=det(Is+BA) ,这一特性在统计学和数据分析中尤为重要。 Moore-Penrose伪逆是处理非方阵或奇异矩阵的一种更广泛的概念,它在解决线性最小二乘问题及奇异系统时非常有用。例如,当A是非奇异的,则其伪逆A+等于它的逆A^-1;而对于对称且幂等(即满足A^2=A)的矩阵A来说,其伪逆就是自身。此外,在许多情况下,矩阵及其伪逆具有相同的秩。 在随机矩阵分析中,“期望”是一个重要的概念。随机矩阵X的期望E{X}定义为非随机的矩阵形式,其中每个元素是对应于X中的那些元素的平均值。例如对于向量来说,E{X} 就是该向量各个分量的均值。 关于矩阵期望的一些性质包括:给定任意矩阵A和向量b,则有E{Ax+b}=AE{x}+b;随机变量X^2 的期望描述了其方差;多维情形下 E{X^TAX} 描述了协方差结构,这在多元分析中很有用。对于乘积形式的期望值,即E{(AX)(AX)^T}, 可以简化为A乘以E{X^TX} 的形式。 此外,Kronecker积运算也有特殊性质:(A⊗B)+=A+⊗B+, 这在处理高维数据和多维度信号分析时特别有用。它允许不同维度上的扩展操作,并将数据嵌入到更高层次的空间中进行进一步的解析研究。 综上所述,这些矩阵公式与性质构成了现代计算方法理论推导及实践应用的基础框架。掌握并运用好这些技巧对于深入理解和有效使用机器学习和人工智能领域中的各种技术至关重要。