Advertisement

基于卷积神经网络的晶圆缺陷检测与分类

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用卷积神经网络技术,开发了一种高效的晶圆缺陷自动检测与分类系统,旨在提升半导体制造过程中的质量控制效率和准确性。 针对晶圆检验过程中扫描电镜图像的缺陷检测与分类问题,采用了“ZFNet”卷积神经网络进行晶圆缺陷分类,并基于此构建了一种“基于块的卷积神经网络”的缺陷检测算法。为了提高准确率及加快处理速度,还对“更快的区域卷积神经网络”进行了改进,提出了一种新的检测方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究利用卷积神经网络技术,开发了一种高效的晶圆缺陷自动检测与分类系统,旨在提升半导体制造过程中的质量控制效率和准确性。 针对晶圆检验过程中扫描电镜图像的缺陷检测与分类问题,采用了“ZFNet”卷积神经网络进行晶圆缺陷分类,并基于此构建了一种“基于块的卷积神经网络”的缺陷检测算法。为了提高准确率及加快处理速度,还对“更快的区域卷积神经网络”进行了改进,提出了一种新的检测方法。
  • 利用进行
    优质
    本研究采用卷积神经网络技术,专注于工业产品表面缺陷自动检测领域,旨在提高检测精度与效率,减少人工成本。 表面缺陷检测在控制带钢制造过程中的质量方面起着关键作用。然而,传统的带钢缺陷检测仍然主要依靠人工操作,由于效率低下且漏检率高,无法满足实时在线检测的需求。因此,基于计算机视觉技术的缺陷检测方法已经引起了研究人员的广泛关注,并具有重要的理论和实践价值。
  • 改进木材.pdf
    优质
    本文探讨了一种采用改进卷积神经网络技术进行木材缺陷检测的方法,提高了检测精度和效率。该研究为木材加工行业提供了新的技术手段。 本段落档探讨了利用优化的卷积神经网络技术进行木材缺陷检测的研究进展。通过改进现有的深度学习模型,该研究旨在提高对木材表面及内部缺陷识别的准确性和效率,为林业与木制品工业提供更可靠的质量控制工具。
  • 金属表面自动识别
    优质
    本研究提出了一种基于卷积神经网络的创新方法,专门针对金属表面缺陷进行高效、准确的自动检测与分类。通过深度学习技术的应用,大幅提升了工业生产中的质量控制效率和精度。 自动金属表面缺陷检查在工业产品的质量控制方面越来越受到重视。此类检测通常针对复杂的工业场景进行,这既有趣又充满挑战。传统方法主要依赖于图像处理或浅层机器学习技术,但这些方法仅能在特定条件下有效识别具有高对比度和低噪声的明显缺陷。 本段落提出了一种通过双重过程自动检测金属表面缺陷的方法,能够准确地定位并分类实际工业环境中捕捉到的各种输入图像中的缺陷。为此设计了新颖的级联自动编码器(CASAE)架构,用于分割和精确定位缺陷区域。该级联网络基于语义分段将包含缺陷的原始图像转换为像素级别的预测掩模,并进一步利用紧凑型卷积神经网络(CNN)对这些分离出的缺陷进行分类。 实验结果显示,这种方法能够在各种条件下有效地检测金属表面缺陷,满足了工业应用中所需的鲁棒性和准确性要求。此外,该技术还有潜力应用于其他类型的检测任务。
  • CNN
    优质
    本研究提出了一种基于CNN(卷积神经网络)的模型,专注于十个不同类别数据集的高效分类问题。通过精心设计的网络架构和训练策略优化了分类性能。 卷积神经网络可以用于解决10分类问题。这涉及到数据预处理、贴标签以及使用TensorFlow构建CNN结构。
  • 支持向量机马铃薯表面方法.pdf
    优质
    本文提出了一种结合卷积神经网络和支持向量机的方法,用于高效准确地检测马铃薯表面缺陷,提升农产品质量控制水平。 本段落提出了一种基于卷积神经网络(CNN)和支持向量机(SVM)算法的马铃薯表面缺陷检测新方法。该方法通过CNN自动提取马铃薯图片深度特征,然后利用这些特征训练SVM分类器进行识别。此外,还采用了dropout 正则化技术来减少模型过拟合,并加入了1×1卷积层以加快模型运算速度。 实验结果显示,本方法能够有效解决现有研究中存在的问题,并且性能优于常规的CNN模型和传统检测方法。算法运行速度快,准确率达99.20%。通过对比选择学习率、训练次数等超参数以及使用Adam优化算法进行GPU加速技术下的CNN模型训练,同时利用网格搜索法优选SVM参数。 改进后的CNN模型中应用了dropout正则化技术来减小过拟合风险,并且加入1×1卷积层以提升运算效率。实验样本集由实验室机器视觉平台和数据增广方法所得图片组成。 本方法的优点在于自动提取马铃薯图像的深度特征,然后利用SVM分类器实现高准确率的表面缺陷检测。此外,改进后的CNN模型也能够减小过拟合风险,并且提高运算效率。这使得该技术适用于农业应用领域,帮助农民和农业生产商快速高效地检测出马铃薯表面存在的问题。 综上所述,基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测新方法提供了一种有效、准确并且高效的解决方案,满足了现代农业生产的需求。
  • AQI
    优质
    本研究利用卷积神经网络模型对空气质量指数(AQI)进行深入分析和准确预测,旨在改善环境监测与管理。 主要是对这里面的数据进行处理。
  • CNN图像
    优质
    本研究探讨了利用卷积神经网络(CNN)进行图像分类的方法,通过实验分析优化模型结构与参数,展示了其在图像识别任务中的高效性。 卷积神经网络(CNN)可以用于图像分类任务。
  • 3D视频
    优质
    本研究提出了一种基于3D卷积神经网络的视频分类方法,有效提升了对动态场景的理解与识别精度,在多个数据集上达到领先水平。 在三维卷积神经网络(3DCNN)的基础上进行视频分类是计算机视觉领域中的一个重要任务,特别是在动作识别与理解方面。3DCNN通过捕捉空间及时间特征来提高视频的分类准确性。 **UCF-101数据集**: UCF-101是一个广泛使用的包含101种不同类别动作的数据集,包括人与物体交互、肢体运动、人际互动、乐器演奏和体育活动等。该数据集因其多样性和复杂性被用作评估3DCNN性能的理想工具。 **3DCNN结构**: 3DCNN的核心在于通过三维卷积来处理空间及时间信息的结合。一个典型的架构包括输入层,多个3D卷积层、池化层和全连接层。具体而言,给定数据集中的视频帧被分割成连续7帧的60x40图像,并经过一系列操作进行特征提取。 - **H1 层**: 这一层通过灰度值以及在X轴和Y轴方向上的梯度变化及光流来预先设定硬核以提取初始特征。 - **C2 层**: 两个7x7x3的卷积核用于进一步处理,产生更多的特征图谱。 - **S3 层**: 使用2x2的最大池化层减少计算量并保留主要信息。 - **C4 层**: 利用更大的卷积核继续提取更高级别的特征,并增加更多特征映射的数量。 - **S5 层**: 通过一个3x3的池化操作进一步降低每个映射的空间大小,为后续全连接层准备输入数据。 **视频分类流程**: 1. 预处理:将视频分割成连续帧序列。 2. 特征提取:使用卷积层捕捉空间和时间联合特征。 3. 池化特征: 通过池化操作减少计算量,同时保留关键信息。 4. 全局表示:全连接层将输出转换为全局特征向量。 5. 分类:利用softmax函数进行多分类预测,并确定视频类别概率。 **参数调整**: 可以通过对学习率、卷积核大小、池化尺寸及步长,批量大小以及正则化参数的调节来优化3DCNN性能。实际应用中通常需要多次迭代训练过程,通过监控损失和验证集精度来进行超参调优,并使用数据增强技术防止过拟合。 总结来说,在视频分类任务上基于3DCNN的应用结合了深度学习、计算机视觉与信号处理等多个学科的知识。通过对网络结构及参数进行优化调整,可以构建出能够有效识别理解视频动作的高效模型。这种技术在智能监控系统、社交媒体分析和自动驾驶等领域具有广泛的实际应用价值。