本项目专注于研发一种高效的锂电池供电升压及充电管理系统,旨在优化能源使用效率并延长电池寿命。通过先进的电压调节技术,确保设备在各种工作条件下均能稳定运行,并支持快速充电功能以缩短充电时间。该设计方案具有广泛的应用前景,在便携式电子产品、电动汽车等多个领域展现出巨大潜力。
最近我一直在开发一款基于锂电池供电的产品,并且对电源部分有以下要求:1、 使用单节可充电的3.7V锂电池作为电源;2、 板载自带充电管理模块,支持通过5V太阳能板或安卓手机充电器进行直接充电;3、 能够稳定输出5V电压以供相关电子设备使用;4、 需要提供稳定的3.8V电压,并且能够瞬间承载超过2A的电流来为4G通信模块供电;5、 稳定供应3.3V电压,用于MCU及其他需要此电压值工作的电路。
查阅资料后了解到,标称容量为3.7V的锂电池工作范围在2.8V至4.2V之间。因此,在没有额外电源管理的情况下直接使用这些电池无法稳定输出5V、3.8V和3.3V等所需的固定电压。为了满足上述需求,显然需要借助特定类型的电源转换芯片来实现。
对于获得稳定的5伏特电能而言,最明显的选择是采用升压型的电路设计;然而,针对3.8伏特与3.3伏特这两种较低但依然必要的输出电压值来说,则不能直接依赖锂电池通过低压差调节器(LDO)来进行转换。尽管理论上可行,但实际上会浪费电池的能量:因为无论是哪种类型的LDO都需要输入电压高于其设定的输出电平才能正常工作。例如,在尝试获取3.3伏特供电时,如果仅仅依靠原始电池能量,则当它的电量降至接近但略高于所需数值(即约等于或稍多于3.3V)的时候便无法继续提供稳定的电源供给了。
经过反复考量后得出结论:为了最大限度地利用锂电池的能量并确保所有电子元件均能获得所需的稳定电压,最合理的方式是采用“先升压再降压”的策略。具体来说就是首先使用合适的芯片将电池的电量提升至一个较高的水平(如5V),然后通过另一些特定类型的转换器进一步调整为所需的确切值(即3.8V和3.3V)。