Advertisement

基于理想电流源的Multistage高回退Doherty放大器在ADS中的仿真研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了基于理想电流源的多级高回退Doherty放大器的设计,并利用ADS软件进行了详细的仿真分析,以优化其性能。 在下载之前,请阅读关于Multistage DPA电流源仿真和Novel架构DPA电流源仿真的相关内容(使用ADS2023软件)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Multistage退DohertyADS仿
    优质
    本研究探讨了基于理想电流源的多级高回退Doherty放大器的设计,并利用ADS软件进行了详细的仿真分析,以优化其性能。 在下载之前,请阅读关于Multistage DPA电流源仿真和Novel架构DPA电流源仿真的相关内容(使用ADS2023软件)。
  • 非对称退Doherty功率架构论与仿
    优质
    本研究探讨了非对称高回退Doherty功率放大器的理想结构理论,并通过详尽的仿真分析验证其性能优势,为高效无线通信系统设计提供了新思路。 使用ADS理想电流源对B类和非对称高回退Doherty架构的回退效率、输出阻抗及电压电流进行了仿真。 Doherty功放是一种利用负载调制技术来提高回退效率的放大器,其设计背景是为了应对通信系统中调制信号峰均比越来越大的问题。传统放大器在功率回退点处效率较低,而Doherty功放则能有效解决这一难题。
  • ADS仿宽带对称式退Doherty设计(含版图文件)
    优质
    本项目专注于宽带对称式高回退Doherty放大器的设计与优化,利用ADS仿真软件进行电路性能分析,并提供完整的版图源文件。 频率范围为1.8-2.2GHz的系统具有0.4GHz带宽,并且饱和增益在7.5至9dB之间。回退增益设定为11dB,而饱和效率超过65%,回退效率则高于40%。此外,该设计还采用了9dB的回退DB数。 详细的设计介绍可以在相关博客文章中找到。
  • GAN件CGH40010F架构Doherty论及仿ADS工程)
    优质
    本文利用ADS软件,基于GAN器件CGH40010F探讨了半理想架构Doherty放大器的理论与仿真,为高效功率放大提供了新思路。 在下载前,请参考相关博客内容。下载完成后,需要先添加CGH40010F的库路径,并运行HB1TonePAE_Pswp_Doherty原理图。理想架构的Doherty功率放大器理论与仿真已经介绍了如何在ADS中使用理想电流源来对DPA进行仿真。然而,理想的电流源过于理想化,电压和电流的行为需要通过数学公式严格定义,稍有不慎便会出现问题。那么,是否可以利用现有的管子模型来进行DPA架构的模拟呢?答案是肯定的,但这样做的结果必定会与纯粹的理想状态有所差异。
  • ADS宽带Doherty仿与版图设计
    优质
    本研究聚焦于基于ADS软件的宽带Doherty放大器仿真和版图设计,旨在优化其性能,实现高效功率放大。通过详细的电路仿真和布局优化,探索提高增益、效率及带宽的方法。 设计指标如下:频率范围为2.3-3.5GHz;带宽1.2GHz;饱和增益8-11.7dB;回退增益设定为11dB;饱和效率超过60%;回退效率高于40%。 参考的设计流程请参阅相关文献。
  • ADS功率设计及仿
    优质
    本研究聚焦于采用先进的设计结构(ADS)进行功率放大器的设计与优化,并通过仿真技术验证其性能,旨在提升射频通信系统的效率和可靠性。 为了使射频功率放大器输出一定的功率给负载,采用了一种结合负载牵引与源牵引的方法进行设计。通过使用Advanced Design System(ADS)软件对稳定性、输入/输出匹配以及输出功率进行了仿真,并提供了清晰的设计步骤。最后,文中提供了一个中心频率为2.6 GHz且输出功率达到6.5 W的功放设计实例及其优化结果和仿真数据。 功率放大器在无线通信系统中扮演着至关重要的角色,能够将微弱信号转换成足够驱动天线发射强信号所需的功率。本段落主要探讨了基于ADS软件的射频功率放大器的设计与仿真方法。这款专业软件广泛应用于微波及射频电路设计领域,并能对放大器性能进行精确模拟和优化。 在功放设计过程中,稳定性是首要关注点之一,以确保设备能在各种工作条件下正常运行并防止自激或振荡现象的发生。通过K因子判断稳定准则:当K>1时,表明放大器处于绝对稳定状态;若不满足该条件,则需添加额外的匹配电路来改善。 功率增益、工作效率(PAE)和非线性区阈值(P1dB)是衡量功放性能的关键指标。设计步骤包括: - 确定静态工作点:通过模拟晶体管直流特性曲线,确定适当的栅极电压与漏极电流以确保最佳运行状态。 - 进行稳定性分析及偏置电路设计:对功率器件进行稳定性的评估,并根据需要添加并联电阻和电容来提高其稳定性;同时设计合适的偏置电路维持工作条件的稳定性。 - 实现输入输出匹配设计:结合负载牵引与源牵引技术,通过调整阻抗参数寻找最大功率传输的最佳状态。这一步骤通常涉及Smith圆图及混合参数网络的设计。 文中以2.6 GHz中心频率和6.5 W输出功率为例展示了整个仿真过程,并验证了所提出方法的有效性及其对功放设计的指导意义。基于ADS软件进行射频放大器开发,涵盖了稳定性分析、性能评估、匹配电路设计等多个环节,要求设计师具备深入的专业理论知识及熟练掌握相关工具的能力。 这一系列复杂的设计流程不仅需要深刻理解微波与射频工程原理,还需要能够灵活运用如ADS这样的专业仿真平台来实现高性能和高效率的功率放大器开发。
  • ADS平台不对称Doherty功率仿设计
    优质
    本研究基于ADS平台,对不对称Doherty功率放大器进行详细仿真与优化设计,旨在提升其效率和线性度。 基于ADS仿真平台,选用飞思卡尔的MRF6S21140H功放管设计了一款工作在2.14 GHz频段WCDMA基站的不对称功率驱动的Doherty功率放大器。
  • 数字预失Doherty仿
    优质
    本研究探讨了采用数字预失真技术优化Doherty放大器性能的方法,并通过计算机仿真验证其有效性。 Doherty放大器能够在宽动态范围内输出功率,并且具备高效率和出色的线性度。
  • ADS设计仿
    优质
    本研究探讨了利用ADS(Advanced Design System)软件进行放大器的设计与仿真工作,详细分析了电路优化及性能评估方法。 在现代射频电路设计领域,精确模拟与优化功率放大器(PA)的性能始终是一个充满挑战的任务。随着仿真技术的进步,ADS(Advanced Design System)作为一款功能强大的高频电路仿真软件为设计师提供了一个接近现实的环境。 本篇文档详细介绍了基于ADS的放大器仿真设计方法和过程,旨在为射频工程师提供一个宝贵的学习资源。从功率放大器的基本结构开始,深入探讨了输入匹配、偏置网络、有源器件选择与使用以及输出匹配四个关键部分的设计要点。这些环节直接影响到最终放大器性能。 在输入匹配阶段,确保信号源与放大器前端阻抗匹配是提高传输效率的关键。随后的偏置网络设计旨在使放大器中的有源器件工作于最佳直流点,并涉及精确控制电压和电流。文中特别提到使用NEC公司的大功率GaAs HJ-FET晶体管(型号:NE6510179),并通过直流扫描法确定了适合的工作条件。 在选择与使用有源器件时,文档重点介绍了如何建立仿真模型并利用各种分析手段优化性能。输出匹配环节则关注于确保负载阻抗与放大器输出特性相匹配,以达到最优功率输出效果。 此外,文章还详细探讨了一种名为“负载迁移法”的技术,用于获取射频功率放大器电路的最佳输入和输出阻抗值。该方法有助于设计师确定合适的匹配网络设计参数。 在仿真过程中,稳定性分析是必不可少的环节之一,确保放大器能在各种条件下稳定运行且避免自激振荡等问题。线性度分析涉及评估失真程度以及谐波与交调效应;电源效率分析则关注电能转换效率以提高能源利用率和降低系统热损耗。 完成上述步骤后,设计师需要对电路进行优化以满足特定的性能指标要求(如增益、功率输出及谐波抑制)。这可能包括调整元件参数或尝试不同拓扑结构等措施来实现目标。 文档通过一个工作频率为2.4GHz的实际射频放大器设计案例展示了理论与实践相结合的应用过程。最终,该放大器在预期性能指标上均达到了要求,验证了所采用方法的有效性。 本段落不仅详述了基于ADS的仿真技术应用,并且通过具体的设计流程和步骤说明如何将这些知识应用于实际工程中。对于从事通信、雷达、导航等无线系统功率放大器设计的专业人士而言,这份文档提供了一个宝贵的参考资料,有助于优化放大器性能并提升整体系统的效能;同时为希望提高射频电路仿真技能的读者提供了深入指导。
  • 三级Doherty功率
    优质
    本文深入探讨了三级Doherty功率放大器的设计与优化,分析其在无线通信中的应用优势及面临的挑战。 为了降低基站能耗并简化散热设计,基于三级Doherty理论(该理论能有效提高功放效率),我们研制了一款平均输出功率为50W的FDD-LTE基站三级Doherty功率放大器,并将其与数字预失真系统结合,在确保线性度的同时,显著提高了功放在高功率回退范围内的效率。实际测试结果表明,该设计下的LTE信号增益约为12.5dB,平均输出功率处的功率附加效率(PAE)保持在40%左右,并且在整个9dB回退范围内,其功率附加效率曲线相对平坦。此外,在数字预失真系统校正后,ACLR达到了-62dBc,满足现代功放高功率回退、高效率和高线性度的设计需求。