Advertisement

基于迁移学习的可食用野菜识别(MATLAB)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用MATLAB开发了一种基于迁移学习技术的模型,旨在有效识别各种可食用野菜。通过将预训练模型应用于特定的野菜品鉴任务中,提高了模型在小规模数据集上的泛化能力与准确性,为野外食物安全提供了有力支持。 基于MATLAB的Matconvnet工具箱实现了一种可食用野菜识别系统,包括单一图像识别和批量图像识别功能,并可以通过更改训练集的方式实现其他目标的识别。该系统采用VGG-F模型。文件夹中包含1200张野菜图片数据集、训练代码、GUI演示界面的实现、系统文档以及操作演示视频。 由于上传限制,fisher准则和VGG-19实现可食用野菜识别的相关内容无法在此上传,如有需要可以另行联系获取更多信息。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB
    优质
    本研究利用MATLAB开发了一种基于迁移学习技术的模型,旨在有效识别各种可食用野菜。通过将预训练模型应用于特定的野菜品鉴任务中,提高了模型在小规模数据集上的泛化能力与准确性,为野外食物安全提供了有力支持。 基于MATLAB的Matconvnet工具箱实现了一种可食用野菜识别系统,包括单一图像识别和批量图像识别功能,并可以通过更改训练集的方式实现其他目标的识别。该系统采用VGG-F模型。文件夹中包含1200张野菜图片数据集、训练代码、GUI演示界面的实现、系统文档以及操作演示视频。 由于上传限制,fisher准则和VGG-19实现可食用野菜识别的相关内容无法在此上传,如有需要可以另行联系获取更多信息。
  • MatlabGoogleNet在分类
    优质
    本研究利用MatLab平台实施GoogleNet模型进行迁移学习,探索其在图像分类与识别任务中的高效性和适用性。 一个完整的迁移学习过程的完整代码。
  • TensorFlow 2.x图像实现
    优质
    本项目利用TensorFlow 2.x框架,结合迁移学习技术,构建高效稳定的图像识别模型。通过复用预训练网络权重,减少训练时间与计算资源消耗,适用于多种图像分类任务。 几乎所有图像识别任务都可以基于这段代码实现。该代码涵盖了:制作图像数据集、进行图像预处理、搭建及微调模型、训练与测试模型以及保存模型等内容。本例中,我们使用了TensorFlow的ResNet预训练模型,并在此基础上进行了微调,从而能够解决复杂的分类问题。
  • _TransferLearning__PPT_
    优质
    本PPT全面介绍迁移学习的概念、原理及其应用,涵盖不同领域的案例分析和实践技巧。适合初学者与进阶者参考使用。 中科院王晋东的转移学习讲解PPT包含丰富的材料和代码连接,非常值得学习。
  • PyTorch实战:天气
    优质
    《PyTorch迁移学习实战:天气识别》一书深入浅出地介绍了如何利用PyTorch框架进行迁移学习,并具体应用于天气图像识别项目中。 PyTorch迁移学习实战可以应用于天气识别项目中。通过利用预训练模型并进行适当的微调,我们可以有效地实现对不同天气状况的准确分类与预测。这种方法不仅能够减少从头开始训练所需的时间和计算资源,还能提高模型在特定任务上的性能表现。
  • ResNet50
    优质
    本研究利用预训练的ResNet50模型进行图像分类任务的迁移学习,通过微调网络参数提高在特定数据集上的分类性能。 ResNet50网络预训练模型。
  • 进行动物脸部
    优质
    本研究探索了利用迁移学习技术提升动物脸部识别准确性的方法,旨在为生物学家和研究人员提供高效的数据分析工具。 利用迁移学习进行动物脸部识别:通过农场的摄像装置获取牛的脸部图像及身体状况的照片,并运用深度学习技术分析牛的情绪和健康状态。这有助于农场主判断哪些牛生病了,具体患有何种疾病;哪些牛没有吃饱;甚至还能确定哪只母牛进入了发情期。 除了使用摄像头捕捉“牛脸”信息之外,还可以结合可穿戴智能设备进行综合管理,使农场主能够更好地监控整个牧场的情况。收集到的数据会被上传至云端服务器,并通过自主研发的算法将海量原始数据转化为直观图表和有用的信息发送给用户。这些信息涵盖了奶牛健康评估、发情期检测与预测、喂养情况及位置追踪等多方面内容。
  • 进行水声目标
    优质
    本研究采用迁移学习技术,旨在提升水下声音信号中特定目标的识别精度与效率,为海洋监测和潜艇探测等领域提供技术支持。 海洋声场环境的时空变化特性以及水下声音目标发声机制的多样性以及其他噪声源的影响,使得在复杂环境中进行有效的水声目标检测与识别变得十分困难。传统的识别方法主要依赖于音频时频域特征分析,在这种情况下难以获得有效且具有鲁棒性的表征特征及结果。 为解决这些问题,本段落提出了一种基于迁移学习的方法来实现水下声音目标的分类和识别。该方法利用预训练网络VGG和VGGish提取深层声学特性,并通过模型微调进一步优化性能表现。实验结果显示,所提出的算法在提高准确率的同时显著减少了所需的训练时间;其中采用微调策略的迁移学习技术,在水下声音目标识别任务上的平均准确性达到了92.48%,这一结果代表了目前该领域的最佳水平。
  • MATLABAlexNet自定义图像数据库实现.rar
    优质
    本资源提供了一个基于MATLAB平台利用AlexNet进行迁移学习的具体实践案例,旨在实现对特定图像数据集的有效分类与识别。通过调整网络参数及训练策略,能够显著提升模型在定制化视觉任务上的性能表现。 MATLAB的Alexnet迁移学习实现自己数据库的图像识别.rar
  • 图像风格实现
    优质
    本研究利用迁移学习技术,探索并实现了高效的图像风格迁移算法,能够将不同艺术作品的风格应用到普通照片上,丰富了数字艺术创作的可能性。 迁移学习是一种深度学习技术,它利用预训练模型在大规模数据集上获得的特征来改善新任务的表现。图像风格迁移就是一种应用这种技术的方法:将源图像(即内容图像)中的语义信息与目标图像(即艺术作品)的视觉风格相结合,从而生成一幅新的具有独特风格的艺术品。这种方法结合了卷积神经网络的强大功能和人类对美的感知特性。 VGG19是伦敦大学学院视觉几何组开发的一款深度卷积神经网络,主要用于图像分类任务,并且在当时是一个重要的突破点。该模型包含有19层的卷积结构,在迁移学习中,它的权重已经经过充分训练以捕捉复杂的图像特征,这对于风格转移来说是非常有用的。 实现图像风格迁移通常包括以下步骤: 1. **内容表示**:选择一幅目标内容图片,并通过VGG19网络进行前向传播。选取特定中间层(如pool_4)的激活值来作为内容描述符,因为这些层次能够同时捕捉到足够的细节和整体结构。 2. **风格表示**:同样地,对风格图像执行前向传播操作以获取多层激活图,并使用Gram矩阵计算不同层级上的特征分布。这有助于提取出纹理、色彩等局部统计特性,从而反映出图像的独特艺术风格。 3. **损失函数与优化**:定义一个综合了内容和样式信息的损失函数。通过反向传播算法并利用梯度下降方法来最小化这个损失值,逐步调整生成图片的内容特征使其更接近目标,并同时保持原始内容不变形。 4. **迭代更新**:不断重复上述过程直到新图像在风格上越来越接近预设的目标风格,最终产生一个融合了两幅原图特点的新作品。 5. **性能优化**:实际操作中可能会对VGG19模型进行简化处理以减少计算资源的消耗。例如只使用其中的部分层提取特征或采用更轻量级的设计方案来降低运算复杂度和内存需求。 迁移学习技术在图像风格转移中的应用大大缩短了从头开始训练一个复杂的深度神经网络所需的时间,并且提高了生成效果的质量与多样性。这使得艺术家、设计师及娱乐行业能够借助于这种创新的技术手段创造出前所未有的数字艺术作品,开拓出新的创作领域。