Advertisement

Python通信协议用于PC经由数据网关读写PLC寄存器

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目介绍了一种基于Python的通信协议,实现通过个人计算机和数据网关访问及修改可编程逻辑控制器(PLC)中的寄存器值。 使用西门子S7-200CN PLC,并在V4.0 STEP 7 MicroWIN SP9软件上导入Modbus Slave Port0(v1.0)功能模块。将slave.mwp文件下载到PLC并运行,通过串口连接PLC与数据采集网关(如PC、树莓派或开发板)。接着,在数据采集网关上启动server.py程序,并在另一台PC上运行client.py程序。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PythonPCPLC
    优质
    本项目介绍了一种基于Python的通信协议,实现通过个人计算机和数据网关访问及修改可编程逻辑控制器(PLC)中的寄存器值。 使用西门子S7-200CN PLC,并在V4.0 STEP 7 MicroWIN SP9软件上导入Modbus Slave Port0(v1.0)功能模块。将slave.mwp文件下载到PLC并运行,通过串口连接PLC与数据采集网关(如PC、树莓派或开发板)。接着,在数据采集网关上启动server.py程序,并在另一台PC上运行client.py程序。
  • RFID
    优质
    RFID读写器通信协议是规范RFID系统中读写器与标签、计算机等设备间数据交换的标准规则,涵盖物理层到应用层的各项技术细节。 ### RFID读写器通讯协议详解 #### 一、引言 在无线射频识别(Radio Frequency Identification,简称RFID)技术领域中,读写器与主机之间的通讯协议扮演着极其重要的角色。它不仅确保了数据的准确传输,还极大地提高了系统的稳定性和可靠性。本段落将深入探讨一种专门用于控制无源标签读头的读写器通讯协议。 #### 二、通讯帧格式介绍 ##### 1. 命令帧格式定义 **数据流通方向:** 主机 → 读写器 **格式说明:** | 字段 | 长度 | 描述 | |------------------|------|--------------------------------------------------------------| | Packet Type | 1B | 包类型域,固定为`0xA0` | | Length | 1B | 包长域,指示Length域之后的数据长度 | | Command Code | 1B | 命令码域 | | Device Number | 1B | 设备号域;当用户代码为`00`时表示群发| | Command Data | N | 命令帧中的参数域 | | Checksum | 1B | 校验和域,校验范围包括从包类型域至最后一个参数域的所有字节 | **示例:** - **主机发送命令:** `A0038200DB` - 包类型为`0xA0` - 数据长度为`3` - 命令码为`82` - 设备号为`00`(表示群发) - 校验和为`DB` ##### 2. 读写器命令完成响应帧格式定义 **数据流通方向:** 读写器 → 主机 **格式说明:** | 字段 | 长度 | 描述 | |------------------|------|--------------------------------------------------------------| | Packet Type | 1B | 包类型域,固定为`0xE4` | | Length | 1B | 固定长度为`0x04` | | Command Code | 1B | 命令码域 | | Device Number | 1B | 设备号域;当用户代码为`00`时表示群发| | Status | 1B | 状态域,描述命令执行的结果 | | Checksum | 1B | 校验和域 | **状态码说明:** | 序号 | 值 | 描述 | |------|------|------------------| | | `05` | 表示未能成功识别标签| - **识别失败回:** - 包类型为`E4` - 长度为`0x04` - 用户代码为`00` - 状态码为`05`(表示未成功识别标签) - 校验和为`91` ##### 3. EPC标签读取命令帧格式 **示例:** - **主机发送命令:** `A00680000102D6` - 包类型为`A0` - 数据长度为`6` - 命令码为`80`(表示从内存地址读取数据) - 设备号为`00`(表示群发) - 从内存地址`0x02`开始读取1个字的数据 - **示例:** `A006800001D6` - 表示从`0x02`地址开始读取数据。 #### 三、具体应用 ##### EPC标签识别与信息反馈: - 当主机发送命令后,如果成功获取到EPC标签的信息: - 包类型为`E4` - 长度固定 - 用户代码为`00` - 状态码表示操作结果(如成功返回数据) - 校验和 通过上述内容,我们可以清晰地了解到RFID读写器通讯协议的基本组成以及具体应用。这些协议规定了读写器与主机之间数据交互的方式,确保了RFID系统能够高效、可靠地工作。对于RFID系统的设计师和使用者来说,掌握这些基础知识是非常必要的。
  • LabVIEW中使Modbus
    优质
    本教程详细介绍了如何在LabVIEW环境中利用Modbus协议进行数据通信,并具体讲解了通过该协议读取远程设备寄存器的方法和步骤。 LabVIEW是一种图形化编程语言,由美国国家仪器公司(NI)开发,并广泛应用于测试、测量及控制系统设计领域。在工业自动化环境中,Modbus协议是一个常用的通信标准,它允许设备间的数据交换,尤其是在PLC与PC之间。 本教程旨在详细阐述如何利用LabVIEW实现基于Modbus的寄存器读取功能并自动进行CRC校验的过程。 首先理解基础的Modbus概念非常重要:这是一种主从式通讯机制,在这种模式下,由主设备(例如计算机或LabVIEW程序)发起请求,而PLC等从属设备则负责回应。它定义了一系列标准命令格式,用于寄存器数据读写操作。 在LabVIEW环境下开发一个VI虚拟仪器来模拟Modbus通信至关重要。`r_modbus.vi`文件是这一过程的核心组件之一,可能包括一系列的配置选项如串口参数设置(波特率、停止位等)以及针对特定应用环境下的Modbus RTU设置调整。 接下来具体步骤如下: 1. **建立连接**:使用LabVIEW提供的“Serial Library”功能来设定与目标设备之间的串行通信链接。需要正确选择COM端口号并确保所有相关参数如波特率等均符合PLC的配置要求。 2. **构造Modbus报文**:该过程涉及定义功能码、地址及数据字段,其中3号功能码用于指示读取保持寄存器操作;指定开始位置,并留空数据部分以进行只读请求。 3. **计算CRC值**:为了保证传输过程中数据的完整性与准确性,需要对构建好的报文执行循环冗余校验(CRC),LabVIEW内置了相应的函数来完成此项任务。 4. **发送请求信息**:通过串口写入指令将准备完毕的Modbus消息传递给PLC。同时设置合理的超时时间以避免程序因通信延迟而陷入等待状态。 5. **接收回复数据**:当PLC接收到查询后,它会读取指定寄存器并生成反馈报文,并且同样计算CRC值。 6. **验证CRC校验结果**: 接收的响应信息中包含了所请求的数据以及对应的CRC码。重新计算这些数据段的实际CRC并与接收方提供的进行对比以确保一致性。 7. **解析获取的信息**:一旦确认了接收到的所有报文内容无误,就可以从中提取出所需的寄存器值,并根据实际需求转换成二进制、十进制或十六进制等形式。 8. **展示最终结果**: 将处理后的数据在LabVIEW的前端界面中显示出来供用户查看和分析。 通过以上步骤,可以在LabVIEW环境中高效地实现对Modbus协议的支持功能,包括但不限于寄存器读取以及CRC验证。而`r_modbus.vi`程序作为关键组件,在此基础上可以进一步扩展以满足不同类型的Modbus通讯任务需求(例如写入操作、线圈状态查询等)。
  • DM23xx列表Ver2.51.xls
    优质
    此文档为DM23xx系列设备专用的通信协议寄存器版本列表,版本号为2.51,详细列出了各个寄存器的功能和配置参数。 智能电表通信协议是指用于智能电表与数据采集系统之间传输数据的规则和技术标准。这些协议确保了电力公司能够有效地监控和管理用户的用电情况,并且支持远程读取、故障检测以及用户服务等功能。不同的制造商可能会使用不同类型的通信协议,如DL/T 645或Modbus等,以满足特定的应用需求和技术要求。
  • STM32-F407利SPIFlash
    优质
    本项目介绍如何使用STM32-F407微控制器通过SPI通信协议实现对Flash存储器的数据读取与写入操作,为嵌入式系统开发提供实用参考。 基于STM32-F407芯片外设SPI读取和写入W25Q128 FLASH中的数据。
  • 使C#OPC服务PLC进行
    优质
    本项目利用C#编程语言,通过OPC服务器作为桥梁,实现与可编程逻辑控制器(PLC)的数据交互,包括读取和写入操作,旨在提升自动化系统的灵活性和效率。 OPC服务器的功能是与下位机进行数据交换。本资源详细介绍了如何设置OPC服务器连接PLC,并通过C#编写客户端程序来连接OPC服务器,从而实现上位机与PLC之间的数据通讯。附带演示视频和测试代码以供参考。
  • STM32利FSMC进行FPGA的高速
    优质
    本项目详细介绍如何使用STM32微控制器通过FSMC总线实现与FPGA之间的快速数据交换,重点探讨了FPGA配置寄存器的高效读写方法。 STM32F103V系列带FSMC的必须是VCT6及以上的型号。对应的IO口如下: 数据总线(16根) - DB0:PD14 - DB1:PD15 - DB2:PD0 - DB3:PD1 - DB4:PE7 - DB5:PE8 - DB6:PE9 - DB7:PE10 - DB8:PE11 - DB9:PE12 - DB10:PE13 - DB11:PE14 - DB12:PE15 - DB13:PD8 - DB14:PD9 - DB15:PD10 地址总线(8根) - AB16: PD11 - AB17: PD12 - AB18: PD13 - AB19: PE3 (本程序中未用到) - AB20: PE4 (本程序中未用到) - AB21: PE5 (本程序中未用到) - AB22: PE6 (本程序中未用到) - AB23: PE2 (本程序中未用到) 控制线(3根) - WR:PD5 - RD:PD4 - CS0:PD7
  • USBPC机与FPGA
    优质
    本项目探讨了利用USB协议实现个人计算机(PC)与现场可编程门阵列(FPGA)之间高效、可靠的数据交换方法,旨在促进硬件开发中的灵活性和便捷性。 本段落介绍了通过USB接口实现FPGA与PC机之间的通信的方法,包括了FPGA及USB接口控制芯片的硬件和软件设计,并阐述了整个系统的设计与实现方法。
  • Linux MDIOPHY
    优质
    本简介介绍如何在Linux系统中通过MDIO接口读取和写入PHY芯片的寄存器值,实现网络设备底层配置。 通用代码编译后可以读写物理寄存器。