Advertisement

基于轮子纵向打滑的移动机器人自适应跟踪控制研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究聚焦于移动机器人的自适应跟踪控制系统设计,特别针对轮式驱动时可能出现的纵向打滑问题,提出了一种创新性的解决方案。通过优化算法调整控制策略,有效提升了机器人的稳定性和运动精度,在复杂地形条件下展现出优越性能。 针对纵向滑动参数未知的轮式移动机器人的轨迹跟踪问题,提出了一种自适应跟踪控制策略。通过两个未知参数来描述机器人左右轮的纵向打滑程度,并建立了差分驱动轮式移动机器人的运动学模型;设计了补偿纵向滑动的自适应非线性反馈控制律;应用Lyapunov稳定性理论与Barbalat定理证明了闭环系统的稳定性;同时提出了一种通过极点配置方法在线调整控制器增益的方法。仿真结果验证了所提控制方法的有效性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于移动机器人的自适应跟踪控制系统设计,特别针对轮式驱动时可能出现的纵向打滑问题,提出了一种创新性的解决方案。通过优化算法调整控制策略,有效提升了机器人的稳定性和运动精度,在复杂地形条件下展现出优越性能。 针对纵向滑动参数未知的轮式移动机器人的轨迹跟踪问题,提出了一种自适应跟踪控制策略。通过两个未知参数来描述机器人左右轮的纵向打滑程度,并建立了差分驱动轮式移动机器人的运动学模型;设计了补偿纵向滑动的自适应非线性反馈控制律;应用Lyapunov稳定性理论与Barbalat定理证明了闭环系统的稳定性;同时提出了一种通过极点配置方法在线调整控制器增益的方法。仿真结果验证了所提控制方法的有效性。
  • 模轨迹_MATLAB实现_轨迹__轨迹
    优质
    本研究探讨了基于MATLAB平台的移动机器人滑模轨迹控制技术,重点在于提高机器人在复杂环境中的路径追踪精度与稳定性。通过理论分析和仿真验证,展示了滑模控制算法在实现精确、快速、鲁棒性高的轨迹跟随任务中的优越性能。 移动机器人的滑模轨迹跟踪控制可以通过MATLAB进行仿真研究。
  • 神经网络在不确定条件下轨迹
    优质
    本研究探讨了利用神经网络实现自适应滑模控制技术,以增强机器人在存在不确定性环境中的路径追踪性能和稳定性。 本段落提出了一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该方案结合了神经网络的非线性映射能力、滑模变结构技术和自适应控制技术,旨在解决由于系统建模误差及外部干扰导致的问题。 对于机器人的不确定性部分,采用径向基函数(RBF)网络进行逼近和补偿,并通过设计滑动表面来消除这些不确定性的负面影响。同时,在控制器中引入自适应算法以动态调整参数值,进一步提升系统的性能表现。此外,基于Lyapunov理论证明了该方法可以确保机器人的轨迹跟踪误差逐渐收敛至零。 仿真结果表明所提出的控制策略在处理不确定性方面具有优越性和有效性。相较于传统的神经网络控制方案,这种结合滑模变结构与自适应控制的方法能够更快地实现精确的路径追踪,并且具备更好的动态特性以及更强的抗干扰能力,特别适用于难以准确建模或存在不可预测扰动的情况。 综上所述,该方法通过RBF网络的学习功能、滑模变结构控制器的快速响应能力和自适应算法灵活调节参数的能力,在应对系统非线性和不确定性方面表现优异。这种方法的应用和实施对于提高机器人在复杂环境中的操作性能至关重要。
  • 模变结构算法轨迹
    优质
    本研究提出了一种采用滑模变结构控制策略来优化移动机器人的轨迹跟踪性能的方法,提高了系统鲁棒性和响应速度。 基于滑模变结构的移动机器人轨迹跟踪控制方法研究了一种有效的路径跟随策略,适用于各种复杂的环境条件。该方法利用滑模理论来设计控制器,确保了系统的鲁棒性和快速响应性,能够有效应对模型不确定性及外部干扰的影响。通过这种方式可以提高移动机器人的导航精度和稳定性,在实际应用中展现出良好的性能表现。
  • 鲁棒反步法论文.pdf
    优质
    本文探讨了基于反步法的移动机器人鲁棒跟踪控制策略,提出了一种改进算法以增强系统在复杂环境中的适应性和稳定性。 本段落以四轮移动机器人为研究对象,构建了完整的数学模型,包括运动学、动力学及驱动电机模型。基于这些数学模型,并采用反步法设计了一种具有全局收敛特性的鲁棒轨迹跟踪控制器。在设计过程中考虑到了驱动电机的特性,使该控制器更贴合实际应用需求。为简化控制系统的复杂度,将控制器划分为三个部分:运动学控制器、动力学控制器和电机控制器。通过构造李雅普诺夫函数证明了,在所提出的控制系统作用下,四轮移动机器人能够实现对预设轨迹的全局渐近跟踪。仿真结果显示基于反步法设计的控制器是有效的。
  • Simulink和Matlab差速MPC轨迹技术
    优质
    本研究探讨了在Simulink与Matlab环境下,应用模型预测控制(MPC)策略于两轮差速驱动移动机器人的路径追踪问题,旨在提升其导航精度与效率。 本研究探讨了基于Simulink与Matlab代码的两轮差速移动机器人模型预测控制(MPC)轨迹跟踪技术。采用Simulink搭建系统主体框架,并通过Matlab编写MPC控制器,不涉及联合仿真过程。 具体而言: 1. 研究对象为两轮差速移动机器人(WMR, wheeled mobile robot),利用模型预测控制实现对车速和路径的精确追踪。 2. 在实验中设置了五种不同轨迹进行测试:三种圆形轨迹(每种速度下),一条直线轨迹,以及一个双移线轨迹。这些试验均在Matlab环境下完成,并生成了仿真结果图示。 3. 为了便于分析对比效果,在代码中集成了绘制对比图像的功能,使用者可以通过简单的命令一键生成不同条件下的路径追踪效果图。 4. 在构建MPC控制器时特别注重控制量的平滑输出问题,因此采用了基于增量变化的方式来设计控制器参数。 5. 整个项目的代码遵循严格的规范标准,并在关键部分添加了详细的注释以方便他人理解和使用。 关键词:两轮差速移动机器人;模型预测控制(MPC)轨迹跟踪;Simulink建模;Matlab编程实现;单独仿真环境搭建;横向与纵向同步追踪技术应用;采用增量式策略优化控制器性能。
  • 模糊PID微型无姿态及仿真(2008年)
    优质
    本文探讨了基于模糊自适应PID算法对微型无人机纵向姿态的有效控制方法,并通过仿真验证其性能。 为了满足小型实验无人机智能自主飞行的需求,提出了一种基于模糊控制的纵向姿态调节方法,并设计了模糊自适应PID控制器。该控制器能够有效地实现无人机的纵向姿态调整与航迹跟踪功能。仿真测试结果显示,相比传统的PID控制器,所提出的模糊自适应PID控制器具有更优的性能表现:响应迅速、超调量小、精度高且具备较强的鲁棒性和自适应能力,完全符合自主飞行的要求。
  • 视觉方法论文综述.pdf
    优质
    本文为一篇关于移动机器人视觉跟踪控制方法的研究综述性论文,旨在全面总结和分析当前该领域的研究成果与技术进展。 移动机器人视觉跟踪控制是机器人研究的热点之一。本段落依据跟踪目标的类型,将移动机器人视觉跟踪控制方法分为两类:一类是跟踪静态目标的方法,另一类则是针对动态目标的方法。不过根据题目要求,这里只提到了关于静态目标的部分内容,因此重写时仅保留了与静态目标相关的信息描述:“本段落依据跟踪目标的类型,将移动机器人视觉跟踪控制方法概括为跟踪静态目标的方法”。
  • MPC路径方法
    优质
    本研究提出了一种基于模型预测控制(MPC)的轮式移动机器人路径跟踪算法,有效提升了机器人的运动精度和响应速度。 本段落提出了一种基于扰动观测器的模型预测控制方法来解决轮式移动机器人在存在输入干扰情况下的路径跟踪问题。通过设计非线性干扰观测器来估计并补偿外部干扰,同时针对机器人的输入限制采用了具有渐近收敛性的名义模型预测控制策略。仿真结果表明,在有缓慢变化的输入扰动的情况下,所提出的方案能够使轮式移动机器人精确地遵循预设路径。
  • Desktop_轨迹迭代学习_迭代学习___
    优质
    本研究探讨了针对移动机器人的桌面级应用,开发了一种高效的迭代学习控制算法,以增强其在路径规划与精确跟踪任务中的性能。 在移动机器人领域,轨迹跟踪是实现自主导航的关键技术之一,而迭代学习控制(ILC)则是提高这种跟踪性能的有效方法。本段落主要探讨了如何利用迭代学习策略来设计和实施针对移动机器人的离散控制算法,并通过仿真验证其效果。 迭代学习控制是一种在重复任务中通过不断学习和改进控制输入来优化系统性能的控制方法。在移动机器人的轨迹跟踪问题中,ILC可以逐步减少机器人实际路径与设定轨迹之间的偏差,达到精确跟踪的目的。这种控制策略特别适用于周期性任务,如沿固定路径的导航或作业。 为了设计有效的迭代学习控制系统,首先需要理解移动机器人的运动模型。通常这个模型包括位置、速度和角度等状态变量以及相应的动力学方程。例如,我们可以用差分驱动模型来描述机器人的运动,该模型假设机器人由两个独立的驱动轮组成,通过调整轮速来改变机器人的运动状态。 迭代学习控制的设计过程主要包括以下步骤: 1. **初始控制律设计**:需要设计一个基础控制器(如PID控制器)以提供初步的轨迹跟踪能力。 2. **误差计算**:在每个周期结束时,计算当前路径与目标路径之间的偏差。这通常通过欧氏距离或曲率匹配来衡量。 3. **学习规则制定**:根据上述误差值更新控制参数。此过程可以线性也可非线性进行,目的是使下一次执行的轨迹更加接近理想状态。 4. **迭代更新**:在新的周期中应用优化后的控制器,并重复以上步骤。 对于移动机器人而言,在实施ILC时的关键在于找到合适的迭代策略以确保误差持续减小而不引起系统不稳定。这通常需要深入理解系统的动态特性并进行稳定性分析。 本段落提供的文档详细描述了算法的实现细节,包括如何初始化控制输入、定义学习规则以及在MATLAB环境中进行仿真模拟的具体步骤和代码示例。 总之,移动机器人轨迹跟踪中的迭代学习控制是一种强大的工具,能够通过不断的学习与改进提高机器人的追踪精度。应用这一技术可以设计出更智能且自主化的移动机器人系统以满足各种自动化任务的需求。实际操作中需注意确保算法的实时性和稳定性以保证其在真实环境下的可靠性能。