本课程详细介绍了如何使用ANSYS Workbench进行结构件的疲劳寿命预测和损伤容限分析,涵盖应力、应变数据获取及S-N曲线应用等内容。
### ANSYS Workbench 疲劳分析
#### 疲劳概述
疲劳是导致结构失效的常见原因之一,特别是在经历重复加载之后。它是一种重要的技术手段,用于评估结构在动态载荷下的耐久性。
疲劳大致可以分为两大类:高周疲劳和低周疲劳。
1. **高周疲劳**:当承受较高频率循环载荷时(例如从$10^4$到$10^9$次),发生的疲劳称为高周疲劳。在这种情况下,应力水平通常远低于材料的极限强度。针对这类问题,一般采用基于应力的方法进行分析。
2. **低周疲劳**:当承受较低频率循环载荷时(例如次数较少的情况),发生的疲劳称为低周疲劳。这种情况下,材料会经历塑性变形,并且寿命较短。通常使用基于应变的方法来处理此类问题。
在ANSYS Workbench的疲劳模块中,主要采用基于应力的方法来解决高周疲劳的问题。这种方法通过分析不同应力水平下的材料响应预测其使用寿命。
#### 恒定振幅下通用疲劳程序
恒定振幅载荷指的是最大和最小应力保持不变的情况。这是最基础且常见的形式。对于这类情况,可以通过定义应力幅度(即最大与最小应力差的一半)以及平均应力来分析它。
#### 变振幅下的疲劳程序
变振幅载荷指的最大和最小应力随时间变化的情形。这种类型的加载更为复杂,因为它不仅涉及不同水平的应力范围,还包括不同的均值压力。对于这类情况,需要考虑更多的因素如应力比(即最小与最大应力的比例)等。
#### 恒定振幅下的疲劳程序——比例与非比例载荷
##### 成比例载荷
成比例载荷指的是在整个加载过程中主应力之间的比率保持不变的情况。这意味着所有主要的压力会同步变化,因此可以通过增加或减少负载来预测响应的变化。
##### 非比例载荷
非比例载荷指的是一种情况,在这种情况下不同主应力的比例不固定或者随时间改变。这种情况更为复杂因为它涉及到多种不同的加载条件如:
- 不同工况之间交替变化;
- 交变负荷叠加在静态负荷上;
- 非线性边界状况。
对于这些复杂的非比例载荷,需要使用更加高级的分析方法来模拟实际的工作环境。
#### 应力定义
疲劳分析中几个关键应力参数包括:
- **应力范围 (Δσ)**:最大和最小应力之差;
- **平均应力 (σm)**:最大与最小应力总和的一半;
- **应力幅值 (σa)**:即为一半的应力范围;
- **应力比 (R)**:定义为最小与最大压力的比例。
这些参数对于理解材料在特定载荷条件下的行为至关重要。例如,在对称循环加载($σm=0, R=-1$)中,材料将承受大小相同但方向相反的压力;而在脉动循环负载下($σm=\frac{σ_{max}}{2}, R=0$),材料经历一个压力的增加和减少过程。
#### 应力-寿命曲线
应力-寿命曲线 (S-N 曲线) 是疲劳分析中的一个重要概念,它描述了在不同应力水平下材料能够承受的最大循环次数。这条曲线通常由实验数据得出,并且对于不同的材料和加载条件会有所不同。通过比较实际工作条件下材料的 S-N 曲线可以评估结构的安全性和耐久性。
ANSYS Workbench 的疲劳分析模块提供了一套完整的工具来模拟并预测在各种载荷情况下的疲劳行为,这对于工程师或研究人员来说是十分重要的技能。