Advertisement

新的批处理算法用于稀疏矩阵-矩阵乘法(SpMM)_cuda_代码_下载

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本资源提供了一种针对稀疏矩阵-矩阵乘法操作优化的新批处理算法,并附带CUDA实现的源代码,适合高性能计算需求。 该库为 GPU 提供了高性能的批量稀疏矩阵乘法(SpMM)内核。目标矩阵很小,行数或列数仅为几十到几百个元素。这种操作在图卷积网络的应用中十分常见。有关 Batched SpMM 算法的具体信息可以在 Yusuke Nagasaka、Akira Nukada、Ryosuke Kojima 和 Satoshi Matsuoka 撰写的论文“用于加速图卷积网络的批量稀疏矩阵乘法”(发表于 2019 年 IEEE/ACM 集群、云和网格计算国际研讨会,拉纳卡,塞浦路斯)中找到。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -SpMM_cuda__
    优质
    本资源提供了一种针对稀疏矩阵-矩阵乘法操作优化的新批处理算法,并附带CUDA实现的源代码,适合高性能计算需求。 该库为 GPU 提供了高性能的批量稀疏矩阵乘法(SpMM)内核。目标矩阵很小,行数或列数仅为几十到几百个元素。这种操作在图卷积网络的应用中十分常见。有关 Batched SpMM 算法的具体信息可以在 Yusuke Nagasaka、Akira Nukada、Ryosuke Kojima 和 Satoshi Matsuoka 撰写的论文“用于加速图卷积网络的批量稀疏矩阵乘法”(发表于 2019 年 IEEE/ACM 集群、云和网格计算国际研讨会,拉纳卡,塞浦路斯)中找到。
  • 与加实现
    优质
    简介:本文探讨了高效实现稀疏矩阵的乘法和加法运算的方法,通过优化算法减少了计算资源消耗,提高了处理大规模稀疏数据集的速度和效率。 该程序实现了稀疏矩阵的相乘和相加算法,算法简单且效率高。
  • 优质
    稀疏矩阵的加法运算是指如何高效地将两个稀疏表示的矩阵相加。通过仅存储非零元素来节省空间,并设计算法实现快速加法操作,在保持数据结构紧凑性的同时确保计算效率。 设稀疏矩阵A和B均采用三元组顺序表作为存储结构。请设计一个算法来计算A+B,并将结果存于三元组顺序表C中。
  • 转置
    优质
    稀疏矩阵的转置算法是指针对存储稀疏数据结构而设计的一种高效变换方法,能够快速调整矩阵行与列的关系,在保持低内存消耗的同时提高运算效率。 稀疏矩阵转置是处理大量零值矩阵的一种高效方法,在计算机科学领域广泛应用。在进行大型矩阵运算时,如果大部分元素为0,则使用传统的二维数组存储方式不仅浪费空间而且计算效率低。因此,引入了稀疏矩阵的概念,用三元组(row, column, value)来表示非零元素,这样可以大大减少所需的存储空间。 三元组表是常见的稀疏矩阵存储结构之一,它由行索引、列索引和对应的值组成。例如,一个三元组(i, j, v)代表了矩阵中第i行第j列的元素值为v。非零元素以这种形式存储而忽略所有零值。 在C++中实现稀疏矩阵转置通常包括以下步骤: 1. **读取输入**:通过创建一个包含三元组信息(即行、列和对应的值)的二维数组或动态分配结构体数组来完成。每条记录代表原始稀疏矩阵中的非零元素。 2. **初始化转置矩阵**:建立一个新的空三元组列表以存放转置后的结果,其中原矩阵的行列关系将被互换,即行变为列,反之亦然。 3. **遍历三元组**:对于每一个原始三元组(i, j, v),在新创建的转置矩阵中添加一个对应的三元组(j, i, v)。注意,在此步骤中需要交换行列的位置来完成转置操作。 4. **排序转置矩阵**:由于输入可能未按顺序排列,因此对生成的新三元组列表进行排序是必要的。通常按照行索引升序或降序的方式来进行。 5. **输出结果**:将经过处理的三元组写入到文件或者存储于数据结构中以便后续使用。 C++实现时可以利用`struct`定义一个表示稀疏矩阵元素的数据类型,例如: ```cpp struct SparseMatrixElement { int row; int col; double value; }; ``` 并用`std::vector`来存储三元组。遍历和转置操作可以通过循环结构配合`push_back()`函数实现;排序则可以借助于STL中的`sort()`函数,并通过自定义比较器以行索引为依据进行。 在实际编程中,还需要处理如文件读取异常、内存分配失败等可能的错误情况。为了提高效率,还可以考虑使用更复杂的数据结构(例如关联数组或红黑树),但这也可能会增加代码实现难度和理解成本。 总的来说,稀疏矩阵转置是优化大型矩阵运算的有效手段之一;通过三元组表的形式转换可以显著节省存储空间并提升计算性能,在C++编程中涉及数据选择、遍历操作、排序以及异常处理等多个方面。
  • :实现大尺寸内存高效计 - MATLAB开发
    优质
    本项目致力于通过MATLAB开发高效的算法,用于执行大规模稀疏矩阵之间的乘法运算,旨在显著减少内存消耗和提高计算效率。 大型稀疏矩阵之间的乘法可能会导致内存不足错误。这里提供了一个简单的函数来分解两个非常大的稀疏矩阵相乘的问题。无论该函数应用于稀疏矩阵还是稠密矩阵,其实际效用在处理稀疏矩阵的情况下尤为明显。
  • CUDA实现
    优质
    本研究探讨了利用CUDA技术加速大规模稀疏矩阵乘法运算的方法,旨在提高计算效率和性能。 稀疏矩阵可以采用DIA/ELLPACK/COO/CSR/HYB等多种表示形式。在这些不同的表示形式下,稀疏矩阵与矢量的乘法(即稀疏大矩阵*矢量)可以通过CUDA实现。 对于每一行中非零元素数量较为统一的情况,使用ELLPACK表示形式最为理想;而HYB(ELL+COO)则是一个次佳的选择。关于稀疏矩阵的研究非常广泛,这里仅列举了其中的一部分内容。如果有兴趣的朋友可以一起探讨这个话题。
  • verilog_document.zip_128__verilog_ verilog
    优质
    本资源提供了一个利用Verilog语言实现的128x128矩阵相乘的设计文档。包含了详细的代码和注释,适用于学习数字电路设计及硬件描述语言的学生或工程师。 本段落将深入探讨如何使用Verilog语言实现128x128矩阵乘法,并结合Quartus II工具进行设计与仿真。Verilog是一种硬件描述语言(HDL),常用于数字电子系统的建模和设计,包括处理器、内存、接口及复杂的算法如矩阵乘法。 ### 矩阵乘法的原理 矩阵乘法是线性代数中的基本运算。如果A是一个m x n的矩阵,B是一个n x p的矩阵,则它们相乘的结果C将为一个m x p的矩阵。每个元素C[i][j]通过以下公式计算: \[ C[i][j] = \sum_{k=0}^{n-1} A[i][k] * B[k][j] \] ### Verilog中的矩阵乘法结构 Verilog代码通常包含状态机(FSM)、乘法器、加法器以及可能的数据存储单元。在这个案例中,我们有以下文件: - `fsm.v`:控制整个计算流程的状态机模块。 - `top.v`:整合所有子模块并提供输入输出接口的顶层模块。 - `mul_add.v`:包含一个或多个乘法器和加法器以执行乘法和累加操作的模块。 - `memory2.v`, `memory3.v`, 和 `memory1.v`:用于存储矩阵元素,以便分批处理大矩阵乘法。 ### 设计流程 - **定义数据路径**:使用Verilog描述硬件逻辑,包括数据读取、计算及写回过程。 - **状态机设计**:设计一个FSM来控制数据的加载、执行和结果累加顺序。例如,可能有一个状态用于加载矩阵元素,另一个用于乘法操作,再一个用于存储最终结果。 - **乘法器与加法器的设计**:可以使用基本逻辑门实现这些操作或采用更高级IP核进行优化。 - **内存设计**:128x128的矩阵需要大量存储空间。应利用BRAM资源来高效地管理数据。 ### Quartus II 实现 - **综合(Synthesis)**: 将Verilog代码转化为逻辑门级表示,由Quartus II自动完成。 - **适配(Place & Route)**:将逻辑门分配到FPGA的物理位置上进行布局和布线。 - **下载与验证**:编译配置文件并下载至FPGA硬件测试平台以确保设计正确运行。 ### 性能优化 - 使用流水线技术提高计算速度,通过并行处理不同阶段的数据运算。 - 尽可能复用乘法器及加法器来减少资源使用量。 - 采用分布式RAM策略来降低布线延迟和提升性能。 ### 结论 利用Verilog与Quartus II实现128x128矩阵乘法涉及硬件设计、控制逻辑以及数据处理。通过有效的模块划分和优化,可以在FPGA上高效执行大规模计算任务。理解每个模块的作用及其协同工作方式是成功的关键,这需要掌握扎实的Verilog编程技巧及数字电路基础。
  • 加、减与
    优质
    本文介绍了稀疏矩阵在进行加法、减法和乘法运算时的有效算法,探讨了如何高效地处理稀疏数据结构以节省空间并提高计算效率。 此程序实现了使用三元组输入稀疏矩阵,并且支持稀疏矩阵的加法、减法和乘法操作。
  • 加减除运
    优质
    本文章介绍了稀疏矩阵的基本概念及其在各种应用场景中的重要性,并详细讲解了如何进行稀疏矩阵之间的加、减、乘、除等基本运算方法。通过优化算法,提高数据处理效率和节省存储空间。 使用带逻辑链接信息的三元组顺序表来表示稀疏矩阵,并实现矩阵相加、相减、相乘及转置的操作。稀疏矩阵的输入形式采用三元组表示,而运算结果则以常规数组的形式展示出来。
  • 方式
    优质
    本文探讨了稀疏矩阵在计算机科学与工程中的存储和计算方法,介绍了几种常见的稀疏矩阵表示技术及其应用场景。 这篇关于稀疏矩阵处理方法的总结非常全面且具有参考价值,涵盖了通用处理器、GPU以及FPGA等多种平台的内容,值得一读。