Advertisement

语音提取特征的MATLAB程序。

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
主要涉及的是提取时域特征参数的代码,涵盖了语音信号的短时能量、过零率、清音自相关系数以及浊音自相关系数等关键指标。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于MATLAB参数
    优质
    本程序利用MATLAB开发,旨在高效地提取和分析语音信号的特征参数。适用于声学、语言处理及语音识别等领域研究。 主要内容是关于时域特征参数的提取代码。这包括语音信号的短时能量、过零率、清音自相关和浊音自相关的计算。
  • Python_MFCC
    优质
    Python_MFCC项目专注于使用Python语言进行MFCC(梅尔频率倒谱系数)语音信号处理技术的应用与研究,旨在高效地提取和分析语音特征。适合于语音识别、情感分析等领域。 我根据别人分享的代码提取了语音的MFCC特征,并开发了自己的版本,加入了基本特征、一级差分和二级差分。
  • MATLAB GUI中信号
    优质
    本研究探讨在MATLAB图形用户界面(GUI)环境下进行语音信号处理与特征提取的方法。通过设计直观的操作界面,实现了对语音信号的有效分析和处理,为模式识别、语音合成等领域提供了有力工具和技术支持。 使用MATLAB GUI进行语音信号的特征提取,包括了端点检测以及共振峰估计等功能。如果有疑问或建议,请联系相关人员共同开发改进。
  • MATLAB信号
    优质
    本项目专注于利用MATLAB进行语音信号处理,重点在于提取和分析语音信号的关键特征值,为后续模式识别与机器学习应用提供基础数据。 在MATLAB中提取某段语音信号的特征值。
  • MATLAB参数代码
    优质
    本项目提供了一系列基于MATLAB实现的代码,用于高效地从音频信号中提取各种语音特征参数。这些代码适用于语音识别、声学建模和语音分析等应用领域。 该资源为作者原创作品,在网上找不到其他相似版本。提取的语音信息二进制参数及代码具有详细实用的特点,其难度水平相当于本科毕业设计的要求。
  • 与识别
    优质
    《语音特征的提取与识别》一书深入探讨了如何从原始音频信号中抽取关键信息,并运用算法模型实现高效准确的语音识别技术。 本段落旨在讲解语音识别的方法,主要包括Mel频率倒谱系数的提取以及使用softmax分类器进行四分类,所用数据库为京剧。
  • LPCC设计
    优质
    本文介绍了LPCC(线性预测 cepstral系数)语音特征提取的设计方法,通过优化参数设置提升语音识别和处理系统的性能。 语音LPCC特征的提取设计
  • MFCC.tar.gz_MFCC_MFCC_audio feature__mfcc
    优质
    简介:本资源包提供MFCC(Mel频率倒谱系数)特征提取代码和文档,适用于音频处理与分析。包含从原始音频信号中抽取MFCC特征的工具和方法。 MFCC(梅尔频率倒谱系数)是音频处理领域常用的一种特征提取方法,在语音识别、情感分析及音频分类等领域发挥着核心作用。它能够将原始的音频信号转换成一组参数,便于计算机理解和进一步处理。 在MATLAB中实现MFCC通常包括以下步骤: 1. **预加重**:通过应用一阶滤波器(例如,预加重系数为0.97的一阶IIR滤波器)增强高频成分。这种操作模拟了人类听觉系统对高频声音的敏感度。 2. **分帧**:将连续音频信号分割成一系列短时窗口(如每段20毫秒),并设置重叠时间(例如,10毫秒),以便分析局部特性。 3. **窗函数应用**:在每个帧上使用窗函数(比如汉明窗或海明窗)来减少帧间干扰,并使信号边缘更加平滑。 4. **傅里叶变换**:对每段音频数据执行快速傅立叶变换(FFT),将时间域的信号转换为频率域表示。 5. **梅尔滤波器组应用**:在频谱上施加一组梅尔滤波器,通常有20到40个。这些过滤器模仿人类听觉系统对不同声音频率感知的不同密度。 6. **取对数运算**:将通过梅尔滤波器得到的输出值进行对数处理,以模拟人耳对于响度非线性的感知方式。 7. **倒谱计算**:使用离散余弦变换(DCT)来提取能量的主要部分,并保留前13至26个系数。这一步有助于去除高频噪声。 8. **动态特征分析**:为了捕捉信号随时间的变化,还可以计算MFCC系数的差分和双差分值。 在提供的资料包中可能包含: - MATLAB代码文件(如.m文件)用于实现MFCC提取过程。 - 实验音频数据集供测试使用,这些样本涵盖了不同语言、情感及环境噪声等多种情况。 通过以上资源的学习与实践,您可以深入了解并掌握MFCC的提取流程及其重要性。此外,该基础知识同样适用于其他类型的音频处理任务,例如语音识别系统开发或音乐分类等。在机器学习和深度学习模型中使用时,这些特征经常作为输入数据来训练实现特定目标的任务模型。
  • 】基于Matlab信号系统.zip
    优质
    本资源提供了一个基于Matlab开发的心音信号特征提取系统。该系统能够有效分析心音信号,并自动提取关键特征参数,适用于医学研究与临床诊断。 心音信号特征提取是生物医学工程领域中的一个重要研究方向,主要应用于心脏病的诊断与监测。在Matlab环境中进行这项工作可以利用其强大的信号处理和数据分析能力。 1. **数据预处理**:由于心音信号通常包含噪声(如环境噪声、呼吸声等),因此预处理步骤至关重要。Matlab提供了多种滤波器(例如Butterworth、Chebyshev和FIR)用于去除这些噪声,以及使用窗口函数(如Hamming或Hanning)来减小信号边缘效应。此外还需进行时间同步和归一化操作,使数据更易于分析。 2. **心音分段**:心音信号通常由两个主要部分组成——S1和S2,分别代表心脏的闭合声。利用阈值检测、自相关分析或模板匹配方法可以对心音进行准确地划分。 3. **特征提取**:常用的特征包括时域特性(如均值、方差、峰值)、频域特性(如功率谱密度、Mel频率倒谱系数MFCC)以及时间-频率领域特性(例如小波变换和短时傅立叶变换STFT)。Matlab的Signal Processing Toolbox提供了这些计算所需的各种工具。 4. **异常检测**:心音信号中的异常可能指示心脏疾病。通过比较正常心音特征与可疑心音之间的差异,可以识别出潜在问题。这通常涉及到统计测试、机器学习算法(如SVM、决策树和随机森林)的应用。 5. **模型训练及验证**:在提取特征之后,需要构建能够区分正常和异常心音的模型。这可能涉及监督学习方法(例如分类任务)或无监督学习技术(比如聚类)。Matlab的Statistics and Machine Learning Toolbox提供了多种实现这些算法的方法,并且可以通过交叉验证等手段来评估模型性能。 6. **结果可视化**:借助于丰富的图形用户界面GUI开发工具,可以创建交互式界面展示心音信号、特征图和分类结果。这有助于医学专家理解和使用系统提供的信息。 7. **文件结构**:文档中可能包含项目介绍、算法详细步骤、代码说明或实验结果等内容,为用户提供具体操作指导和技术依据。 总之,该Matlab系统提供了一个全面的心音信号处理流程,包括数据预处理、特征提取、异常检测和模型验证。这有助于科研人员及临床医生更深入地理解心脏健康状况,并提高心脏病诊断的准确性和效率。通过学习并掌握这个系统的使用方法,可以提升在生物医学信号处理领域的专业技能水平。