Advertisement

DSP基础知识与术语表

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《DSP基础知识与术语表》是一本全面介绍数字信号处理(DSP)基本概念和专业词汇的手册,适合初学者和技术人员查阅学习。 了解DSP的基本知识可以通过阅读关于DSP术语表的相关资料来实现。DSP术语表有助于掌握数字信号处理领域的基本概念和技术细节。通过学习这些内容,可以更好地理解与应用DSP技术。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DSP
    优质
    《DSP基础知识与术语表》是一本全面介绍数字信号处理(DSP)基本概念和专业词汇的手册,适合初学者和技术人员查阅学习。 了解DSP的基本知识可以通过阅读关于DSP术语表的相关资料来实现。DSP术语表有助于掌握数字信号处理领域的基本概念和技术细节。通过学习这些内容,可以更好地理解与应用DSP技术。
  • Oracle
    优质
    《Oracle基础知识与语法》是一本全面介绍Oracle数据库系统核心概念和技术的手册,涵盖SQL语言、数据管理及性能优化等关键知识点。 这是一部非常好的介绍Oracle语法基础的书籍,非常不错。
  • 期货——期货期权中英文对照
    优质
    本资料提供了期货与期权领域常用术语的中英文对照,旨在帮助初学者掌握相关概念和词汇,加深对期货市场的理解。 在交易开发过程中常用的术语中英文对照表 期货中英文对照表 期货 Futures 期货交易 Futures Trading 商品期货 Commodity Futures 金融期货 Financial Futures 期货市场 Futures Market 保证金制度 Margin System 当日无负债结算 Marking-to-Market 衍生品 Derivatives
  • .pdf
    优质
    《语音识别基础知识》是一份全面介绍语音识别技术入门内容的学习资料,涵盖了基本概念、核心技术及应用案例。适合初学者和相关从业人员参考学习。 本书对语音识别的基本知识进行了详细的介绍,主要由清华大学的语音研究者编写,目前为初稿版本。
  • 射频测量技
    优质
    本书全面介绍射频技术和测量方法的基础知识,涵盖理论分析、实验操作及应用案例,适合电子工程专业学生和技术人员阅读。 射频基础与测量是无线通信领域中的核心概念和技术,它涵盖了从信号产生到传输、接收及测量的各个方面。 ### 射频基本概念 射频(Radio Frequency, RF)是指用于无线通信的电磁波频率范围,通常在3kHz至300GHz之间。这些信号为模拟形式,在数字系统中最终也是通过模拟RF信号进行信息传递。因此,它对于实现远程信息传输至关重要。 ### 射频系统的构成 一个典型的射频系统包括但不限于以下组件: - **天线**:用于发送和接收无线电波。 - **放大器**:增强信号的强度以便于远距离传播。 - **滤波器**:选择性地通过特定频率,阻止不需要的干扰。 - **混频器**:将高频RF信号转换为更容易处理的中频(IF)信号。 - **调制解调器**:负责在发送端将信息编码到射频载波上,在接收端从接收到的数据流中提取原始信息。 ### 调制与解调 通过改变载波频率、幅度或相位,可以实现不同类型的调制。常见的包括AM(幅度调制)、FM(频率调制)和PM(相位调制)。而解调则是将这些变化转化为原始的信号内容的过程。 ### 射频测量 射频信号及其系统的性能评估是确保无线通信质量的关键步骤。这不仅涉及对单个RF信号特性的测试,如功率、带宽及噪声系数等参数,还包括整个系统层面的各项指标分析,例如增益和损耗特性。 #### 测试仪器 - **频谱分析仪**:用于检测和解析射频信号的频率成分。 - **矢量网络分析仪(VNA)**:评估RF组件如天线、滤波器等在不同频率下的性能表现。 - **信号发生器**:提供稳定的测试用RF信号,以验证接收设备的功能性。 - **示波器**:观察射频信号的时间特性及其调制形式。 - **功率计**:测量和监控射频信号的能量水平。 ### 培训目的 通过培训使参与者掌握基本的射频知识、了解测试方法并熟悉常用的RF测试仪器,从而培养能够设计、实施及维护无线通信系统的人才队伍。 ### 通信系统的分类 根据传输媒介的不同,可以将通信系统分为有线和无线两大类;依据调制方式又可分为模拟与数字两类。每种类型的系统均适用于特定的应用场景和技术需求中。 射频基础与测量在无线通信领域扮演着重要角色,涵盖了从理论知识到实际应用的多个方面。对于从事相关研发、工程实施及维护的专业人士而言,掌握这些技能至关重要。
  • MEMS技.rar
    优质
    本资料为《MEMS技术基础知识》压缩文件,内含微机电系统(MEMS)的基本概念、工作原理及应用领域等内容,适合初学者学习参考。 微机电系统(Micro-Electro-Mechanical Systems,简称MEMS)是现代科技中的一个重要领域,它结合了微电子学、机械工程、材料科学、传感器技术、光学以及控制理论等多种学科,致力于研发微米尺度的微型器件和系统。在哈尔滨工业大学开设的相关课程中,学生将深入探讨这一前沿技术的基础知识。 首先会介绍微系统的概述部分,包括其基本概念、历史发展特点及应用领域,并重点讲解MEMS如何在生物医疗、汽车工业、航空航天、通信以及消费电子产品等领域发挥关键作用。 接下来是关于微机电系统功能材料的章节。这部分内容将涉及MEMS设备所用的各种特殊材料及其制备工艺,例如硅(Si)、二氧化硅(SiO2)、多晶硅(polysilicon)和氮化硅(Si3N4)。此外还将讨论光刻、湿法蚀刻及干法蚀刻等不同材料的制造方法。 微机械制造技术是MEMS课程的核心内容之一,涵盖了一系列精细加工工艺,如表面微加工、体微加工以及深反应离子蚀刻(DRIE),这些技术使得在微观尺度上实现复杂结构成为可能。例如可以制作出微型泵、阀和马达等器件。 另外一个重要部分则是关于执行器与传感器的介绍。这部分内容将深入解析MEMS中的两大重要组成部分:能够将电信号转换为机械运动的微机电执行器,以及负责物理量(如压力、温度或加速度)到电信号转化工作的微机电传感器;具体包括了它们的工作原理设计方法和性能评估。 课程还会涵盖噪声分析信号放大滤波技术和数据处理算法等弱信号检测与处理技术。这些都是确保MEMS设备高精度及灵敏度的实际应用中的关键因素之一。 最后,该课程将介绍用于优化设计并进行性能预测的CAD工具使用技巧以及仿真技术的应用。比如COMSOL Multiphysics、ANSYS和AutoCAD都是常用的软件平台。 通过本门课程的学习,学生不仅能掌握MEMS的基础理论知识还能了解实际操作中遇到的技术挑战及解决方案为将来在相关领域内的研究与开发工作奠定坚实基础。随着MEMS技术不断发展其影响力也将持续扩大成为推动科技进步的重要力量之一。
  • MEMS技.rar
    优质
    本资料为《MEMS技术基础知识》压缩文件,包含微机电系统(MEMS)的基本概念、工作原理及应用领域等基础内容,适合初学者学习。 微机电系统(Micro-Electro-Mechanical Systems,简称MEMS)是现代科技中的一个重要领域,它结合了微电子学、机械工程、材料科学、传感器技术、光学以及控制理论等多种学科,致力于研发微米尺度的微型器件和系统。在哈尔滨工业大学开设的相关课程中,学生将深入探讨这一前沿技术的基础知识。 首先会介绍微系统的概述部分,包括其基本概念、历史发展特点及应用领域,并对比传统机械系统的优势。例如MEMS如何在生物医疗、汽车工业、航空航天、通信以及消费电子产品等领域发挥关键作用。 接下来是关于微机电系统功能材料的章节,涉及用于制造MEMS设备的各种特殊材料。这些材料通常具有良好的机械性能、电学性质和化学稳定性,比如硅(Si)、二氧化硅(SiO2)、多晶硅(polysilicon)以及氮化硅(Si3N4)。此外还将讨论不同材料的制备工艺,如光刻技术、湿法蚀刻和干法蚀刻等。 微机械制造技术是MEMS课程的核心内容之一,涵盖了诸如表面微加工、体微加工及深反应离子蚀刻(DRIE)等一系列精细的加工方法。这些技术使得制造出各种微型结构成为可能,例如微泵、微阀以及微马达等。 在执行器和传感器部分中,则会深入解析MEMS技术中的两大重要组成部分——机械执行器与机械传感器的工作原理、设计方法及性能评估。其中,执行器能够将电信号转换为机械运动(如微镜、微泵和致动器),而传感器则负责物理量到电信号的转化(例如压力传感器、加速度计以及陀螺仪)。 接下来是关于微弱信号检测与处理的内容,涉及噪声分析、信号放大技术及滤波手段等。这些都是确保MEMS设备在实际应用中具备高精度和灵敏度的关键因素。 课程还包括设计流程的学习,涵盖从计算机辅助设计(CAD)工具的使用到仿真技术的应用等方面的知识。这些软件包括COMSOL Multiphysics、ANSYS以及AutoCAD等,并且会讲解如何通过模拟来优化设计方案并预测性能表现。 综上所述,这门课程不仅帮助学生掌握MEMS的基础理论知识,还使他们了解实际操作中的技术挑战及解决方案。随着该领域的不断发展,其影响力将持续扩大,成为推动科技进步的重要力量。
  • OSPF OSPF
    优质
    本文主要介绍OSPF(开放最短路径优先)的基本概念、工作原理及其在网络路由中的应用,适合初学者了解和学习。 OSPF(开放式最短路径优先)是一种广泛应用的动态路由协议,在内部网关协议(IGP)中占据重要地位。它由Internet工程任务组(IETF)在RFC2328中定义,旨在解决静态路由在网络扩展中的局限性问题。静态路由需要手动配置和维护,难以适应网络结构变化,而OSPF则提供了更高的灵活性、可靠性和可扩展性。 OSPF基于链路状态算法,意味着每个路由器不仅维护自己的路由表,还构建一个完整的网络拓扑视图。这使得OSPF能够快速响应网络变更,并实现自动收敛。与距离矢量协议(如RIP)不同的是,OSPF不直接交换整个路由表信息,而是通过泛洪链路状态通告(LSA)来传播接口的状态和性能数据。这些LSA包括关于接口的开销、带宽等详细信息,使得其他路由器能够建立链路状态数据库并执行SPF算法以计算到达各个网络目的地的最佳路径。 动态路由协议如OSPF分为内部网关协议(IGP)和外部网关协议(EGP)。IGP用于管理同一个自治系统内的路由配置,而EGP则处理不同AS之间的路由。在IGP中,又可以进一步细分为距离矢量与链路状态两种类型。例如RIP属于距离矢量类,依赖于逐跳的路由信息;而OSPF和IS-IS则是通过LSA交换来构建全局拓扑视图。 对于网络管理员来说,掌握OSPF的基本概念及其适用场景非常重要。它可以支持从小型企业到大型企业或ISP的各种网络架构,并能有效地处理VLSM(可变长子网掩码)与CIDR地址规划以及多区域划分以简化复杂性并优化流量管理。 了解OSPF的工作原理主要包括以下几个关键步骤: 1. 邻居发现:通过Hello报文识别和建立与其他路由器的邻接关系。 2. 发布链路状态信息:广播LSA来共享网络的状态信息。 3. 同步数据库:收集LSA并形成一致的链路状态数据库,确保所有路由器对网络拓扑有相同的理解。 4. SPF算法计算:每个路由器使用SPF算法根据链路状态数据库确定最短路径树(SPT),从而决定最佳路径。 5. 更新路由表:基于SPF结果更新路由表以支持数据包的正确转发。 在配置OSPF时,通常包括以下基础操作: 1. 启动OSPF进程:定义自治系统号并启动OSPF服务。 2. 设置接口参与:指定哪些网络接口应加入到特定区域中进行通信。 3. 区域划分:将整个网络划分为不同的子区域来优化性能和管理效率。 4. 宣告路由:设置需要在区域内通告的网络信息。 5. 邻居关系确认:确保路由器之间建立了正确的邻接状态。 通过学习上述内容,管理员可以更好地理解动态路由协议的优点,并掌握OSPF的基本原理及其配置方法。这不仅有助于提高网络稳定性和效率,还能更有效地应对不断变化的需求和挑战。
  • C.xmind
    优质
    《C语言基础知识.xmind》是一份用思维导图形式整理的C语言学习资料,涵盖数据类型、运算符、控制结构等核心概念,适合编程初学者系统掌握C语言基本原理与应用技巧。 本段落档是关于C语言基础的思维导图,总结了学习C语言的基础路径以及初级阶段涉及的知识点。内容涵盖了数组、内存管理、指针及C语言输入输出流等方面的内容。