Advertisement

通过高斯消元法可以求解线性方程组。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
#include#include#define N 100#define epsilon 1e-6float a[N][N+1];void menu( ){ printf(\t\t%c%c%c^_^Gauss列主元消去法求解线性方程组^_^%c%c%c\n\n,1,1,1,1,1,1); printf(强烈建议您先阅读以下几点后在运行:\n); printf(1.这是用Gauus列主元消去法求解线性方程组的应用程序\n); printf( (Gauus全主元消去法类似可做,读者有兴趣的话可自行而做)\n); printf(2.请您先了解Gauus列主元消去法的主要思想\n); }void main( ){ int i,j,k,n; float t,s=0; char choice; menu( );loop: printf(\n请输入系数方阵的阶数:); scanf(%d,&n); while(n>0) { printf(\n); printf(请输入增广阵矩:\n); for(i=0;i fabs(a[k][k]) ) for(j=k;j=0;k--) { s=0; for(j=k+1;j

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 列主线___
    优质
    本文章介绍了利用高斯列主元消去法解决线性方程组的方法,并探讨了该算法在计算中的应用和优势,适用于学习或复习高斯消元法的读者。 使用高斯列主消元法解线性方程组时,对于有唯一解的方程组可以得到阶梯矩阵及相应的解;而对于无穷多解的情况,则仅能得到阶梯矩阵。
  • 利用线(C++)
    优质
    本文章介绍如何使用C++编程语言实现高斯消元法来解决线性代数中的线性方程组问题,详细讲解了算法原理和具体代码实践。 用高斯消元法解方程组: 21.0x₁ + 67.0x₂ + 88.0x₃ + 73.0x₄ = 141.0 76.0x₁ + 63.0x₂ + 7.0x₃ + 20.0x₄ = 109.0 85.0x₂ + 56.0x₃ + 54.0x₄ = 218.0 19.3x₁ + 43.0x₂ + 30.2x₃ + 29.4x₄ = 93.7
  • 基于二域的线
    优质
    本研究提出了一种在二元域中应用高斯消元法解决线性方程组的新方法,特别适用于密码学和编码理论中的问题。 在二元域中使用高斯消元法可以得到输入矩阵H对应的生成矩阵G,并同时返回满足mod(G*P, 2)=0的矩阵P(其中P表示P的转置)。具体方法是:[P,G]=Gaussian(H,x),x=1或2。当x=1时,表示在生成矩阵G的左边为单位阵的情况下进行操作。
  • 基于MATLAB的线
    优质
    本程序利用MATLAB语言实现高斯消元法,有效解决线性方程组问题。代码简洁高效,具备较强的适用性和稳定性,适用于科研与工程计算。 用高斯消元法解线性方程组的MATLAB程序。
  • 基于MPI的并行线
    优质
    本研究探讨了利用消息传递接口(MPI)实现高斯消元法在大规模线性方程组求解中的并行计算方法,旨在提升算法效率与可扩展性。 在MPI编译环境下,在C源代码基础上编写了一个并行程序来实现高斯消元法求解线性方程组。
  • 用C语言实现线
    优质
    本文章介绍如何使用C语言编程实现经典的数学方法——高斯消元法来求解线性方程组问题。文中详细阐述了算法原理,并提供了具体的代码示例,便于学习和实践。 利用C语言实现高斯消元法求解线性方程组的解。具体方法参见提供的附件。
  • 利用线(MPI)
    优质
    本研究探讨了采用MPI并行计算技术优化高斯消去法在大规模线性方程组求解中的应用,旨在提高算法效率和可扩展性。 基于高斯消去法解线性方程组(MPI),该方法将Ax=b转化为上三角方程组Tx=c,并利用回带算法求解x。在第i次迭代过程中,选取第i列的最大元素作为主元,含有此最大元素的行被称为枢轴行。然后交换枢轴行和第i行的位置,通过使用枢轴行和其他各行(从第i+1到n-1)的倍数来消除当前列中除主元外的所有非零元素。最终将原始nxn的稠密矩阵转化为上三角形,并利用回带算法计算出每个未知量的具体值。
  • 线列主、牛顿迭代和割线
    优质
    本简介探讨四种非线性方程求解方法:包括直接解法中的高斯消元与高斯列主消元,及近似数值分析的牛顿迭代与割线法。 文档内容为数值分析算法的C++实现。这些算法包括非线性方程求解、高斯消元法、高斯列主消元法、牛顿迭代法以及割线法。
  • 用Python实现线
    优质
    本文章介绍如何使用Python编程语言来实现高斯消元法,这是一种有效求解线性代数中方程组的方法。通过实例讲解和代码演示,帮助读者理解并掌握利用该算法解决问题的技巧与步骤。 高斯消元法是线性代数中的一个算法,用于求解线性方程组。尽管该方法在处理复杂问题时可能会显得较为繁琐,但在解决包含大量等式的系统中却非常高效。此外,它还可以用来计算矩阵的秩和逆矩阵。 当应用于特定矩阵时,高斯消元法能够生成所谓的“行梯阵式”。这种方法适用于通过迭代或特殊排列系数的方法来求解大规模方程组的情况。在计算机上使用该方法可以解决包含数千个等式与未知数的问题,并且对于一些具有特别结构的系数系统还存在专门的技术和算法。 总体而言,高斯消元法是一种强大的工具,在数学领域中广泛应用于线性代数问题的求解过程当中。