Advertisement

C语言排序算法代码.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包含多种经典的C语言实现的排序算法源代码,如冒泡排序、快速排序等,适用于学习和实践参考。 本段落介绍了七种排序算法的C语言实现方法:直接插入排序、希尔排序、快速排序、简单选择排序、堆排序、归并排序以及基数排序。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C.zip
    优质
    本资源包含多种经典的C语言实现的排序算法源代码,如冒泡排序、快速排序等,适用于学习和实践参考。 本段落介绍了七种排序算法的C语言实现方法:直接插入排序、希尔排序、快速排序、简单选择排序、堆排序、归并排序以及基数排序。
  • C中的几种
    优质
    本文章介绍了C语言中常用的几种经典排序算法,包括冒泡排序、插入排序、选择排序、快速排序等,并提供了相应的代码实现。适合初学者学习和参考。 这段文字介绍了十种排序方法:堆排序、归并排序、基数排序(基排序)、简单选择排序、快速排序以及冒泡排序等等。
  • C中的选择与示例
    优质
    本文介绍了C语言中实现的选择排序算法及其工作原理,并提供了详细的示例代码供读者参考学习。 选择排序是一种简单直观的排序算法。其基本思想是在尚未排序的数据序列中找到最小(或最大)元素,并将其放到已排序序列的起始位置;然后在剩余未排序的部分继续寻找最小(或最大)元素,重复上述过程直到所有数据均被排序。 用C语言实现选择排序可以按照以下步骤: 1. **初始化**:定义一个整型数组`int num[N] = {89, 38, 11, 78, 96, 44, 19, 25}`,其中N表示数组长度。 2. **选择排序函数定义**:编写名为`select_sort`的函数,该函数接收一个整型数组`a[]`和它的元素个数n作为参数。 3. **外层循环**:使用for循环从0到n-1遍历整个序列(因为最后一轮会自动将最后一个元素放在正确的位置): ```c for(int i=0; i
  • C实现的快速.zip
    优质
    本资源提供了一个用C语言编写的高效快速排序算法程序。它包含完整源代码及示例数据,适用于学习和实践快速排序技术。 快速排序是一种高效的排序算法,在1960年由英国计算机科学家C.A.R. Hoare提出。与冒泡排序、插入排序等基本排序算法相比,它在很多情况下具有显著的性能优势,平均时间复杂度为O(n log n),最坏情况下的时间复杂度也是O(n^2)。 快速排序的核心思想是“分而治之”。首先选择一个基准值(pivot),然后将数组分为两部分:一部分的所有元素都比基准值小,另一部分的所有元素都比基准值大。这个过程称为分区操作。接着对这两部分分别进行快速排序,直到所有元素都在正确的位置上。递归过程在子序列为空或只剩下一个元素时终止。 使用C语言实现快速排序主要包括以下几个步骤: 1. **选择基准值**:通常选取数组的第一个元素或者随机选取一个元素作为基准值。 2. **分区操作**:遍历数组,将小于基准值的元素移动到左边,大于基准值的元素移动到右边。最终位置确定后,该位置即为基准值在排序后的正确位置。 3. **递归排序**:对左右两边子序列分别进行快速排序过程,直到所有元素有序。 以下是一个C语言中实现快速排序的例子: ```c #include void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } int partition(int arr[], int low, int high) { int pivot = arr[high]; int i = (low - 1); for (int j = low; j <= high - 1; j++) { if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } void quickSort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); quickSort(arr, low, pi - 1); quickSort(arr, pi + 1, high); } } void printArray(int A[], int size) { for (int i = 0; i < size; i++) printf(%d , A[i]); printf(\n); } int main() { int arr[] = {10, 7, 8, 9, 1, 5}; int n = sizeof(arr) / sizeof(arr[0]); quickSort(arr, 0, n - 1); printf(Sorted array: \n); printArray(arr, n); return 0; } ``` 在这个示例中,`swap()`函数用于交换两个元素的位置,`partition()`函数负责分区操作,而`quickSort()`则是快速排序的核心部分。它通过递归调用自身对子序列进行排序。最后的`main()`函数展示了如何使用这些功能来实现数组的排序。 快速排序在实际应用中非常广泛,但由于其最坏情况下的时间复杂度问题,在某些情况下性能可能会下降。为了优化,可以采用随机化选择基准值或三数取中的方法(即选取首、尾和中间元素的中位数作为基准),以减少最坏情况出现的概率。同时对于小规模数据或者已经接近有序的数据来说,插入排序或其他简单排序算法可能更高效。因此,在实际编程时可以根据具体情况动态地选择最适合的排序方法。
  • C实现的链表.zip
    优质
    本资源提供了一个使用C语言编写的链表排序算法的完整代码示例。其中包括多种常见的链表操作及排序方法,如插入、删除和冒泡排序等,适合初学者学习与参考。 在编程领域,链表是一种非常基础且重要的数据结构。它与数组不同,并不依赖于连续的内存空间,而是通过节点间的指针链接来存储数据。 本项目讨论的是如何使用C语言实现链表排序,特别是采用选择排序算法进行排序。选择排序是一种简单直观的方法:对未排序序列进行多轮选择,在每一轮中找到当前未排序部分中的最小(或最大)元素,并将其放置在已排序部分的末尾。 首先需要定义一个结构体类型来创建链表节点: ```c typedef struct ListNode { int val; // 节点值 struct ListNode *next; // 指向下一个节点的指针 } ListNode; ``` 接下来实现一些基本操作,如添加新元素、插入到链尾等。这些函数是进行排序的基础: ```c // 创建一个新节点 ListNode* createNode(int val) { ListNode* newNode = (ListNode*)malloc(sizeof(ListNode)); newNode->val = val; newNode->next = NULL; return newNode; } // 在链表末尾插入一个新的元素 void appendToList(ListNode** head, int val) { ListNode* newNode = createNode(val); if (*head == NULL) { *head = newNode; } else { ListNode* temp = *head; while (temp->next != NULL) { temp = temp->next; } temp->next = newNode; } } ``` 然后实现选择排序算法。每一轮中,该算法会找到未排序部分的最小元素,并将其放在已排序部分的末尾: ```c // 对链表使用选择排序 void selectionSortList(ListNode** head) { if (*head == NULL || (*head)->next == NULL) { return; } ListNode* minPtr = *head; // 记录最小元素的位置 ListNode* currentPtr = *head; while (currentPtr != NULL) { if (currentPtr->val < minPtr->val) { minPtr = currentPtr; } currentPtr = currentPtr->next; } if (minPtr != *head) { swapNodes(*head, minPtr); } selectionSortList(&minPtr->next); // 对剩余未排序部分递归调用 } // 交换两个节点的值 void swapNodes(ListNode* node1, ListNode* node2) { int temp = node1->val; node1->val = node2->val; node2->val = temp; } ``` 为了验证排序是否正确,还需要实现一个打印链表内容的功能: ```c // 打印整个链表的内容 void printList(ListNode* head) { ListNode* temp = head; while (temp != NULL) { printf(%d -> , temp->val); temp = temp->next; } printf(NULL\n); } ``` 现在,你已经拥有了一个完整的C语言实现链表选择排序的程序。你可以创建并填充一些随机或特定数值到链表中,然后调用`selectionSortList`函数进行排序,并通过`printList`验证结果是否正确。这种实践有助于理解链表和选择排序算法的工作原理及其实现方法。
  • C中的冒泡.c
    优质
    这段代码实现了经典的冒泡排序算法,使用C语言编写。通过多次迭代数组,比较相邻元素并交换顺序不当的元素来实现有序排列。 这段文字是为学习C语言的初学者准备的基础教程内容之一,专注于冒泡排序算法的学习与理解。通过两轮循环进行数据排列,并在每一轮结束后输出结果。首先详细描述每一阶段的具体步骤,然后总结整个过程的操作方法和逻辑思路。
  • C-冒泡(升
    优质
    本段代码实现了一个经典的冒泡排序算法,用于对一组数字进行升序排列。通过多次迭代和比较相邻元素来逐步将最大的数“冒泡”到列表末尾。适合初学者学习理解和练习C语言编程基础。 冒泡排序是一种基础的排序算法,它通过重复遍历待排序的序列,并比较相邻元素的位置来实现整个序列的有序排列。如果两个相邻元素顺序错误,则交换它们的位置,使得每个元素都能“浮”到正确的位置上。 在C语言中,我们可以使用基本控制结构来编写冒泡排序算法。下面我们将详细探讨冒泡排序的工作原理以及如何用C语言进行实现。 ### 冒泡排序的基本原理 冒泡排序的核心思想是每次比较相邻的两个元素,并根据需要交换它们的位置。这一过程会持续进行,直到没有任何一对数字需要交换为止,即序列已经完全有序了。冒泡排序的时间复杂度为O(n^2),其中n表示数组长度,因此它不适合处理大数据量的情况。 ### C语言实现冒泡排序 #### 1. 定义函数 我们需要定义一个名为`bubbleSort`的函数来执行冒泡排序操作。这个函数需要接收两个参数:一个是整数数组和另一个是该数组的大小: ```c void bubbleSort(int arr[], int n) { // 冒泡排序逻辑实现 } ``` #### 2. 主循环 在`bubbleSort`函数内部,我们使用两层循环来完成冒泡排序。外层循环控制需要遍历的轮数,内层循环则是每一轮中的比较与交换操作: ```c for (int i = 0; i < n - 1; ++i) { // 外层循环,共需n-1轮 for (int j = 0; j < n - 1 - i; ++j) { // 内层循环,每轮比较n-i-1对元素 比较相邻的两个元素并根据需要交换它们的位置。 } } ``` #### 3. 比较与交换 在内层循环中,我们需要比较`arr[j]`和`arr[j+1]`这两个相邻数组位置上的值。如果前者大于后者,则将两者互换: ```c if (arr[j] > arr[j + 1]) { int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } ``` #### 4. 完整的`bubbleSort`函数 结合上述部分,完整的`bubbleSort`函数如下: ```c void bubbleSort(int arr[], int n) { for (int i = 0; i < n - 1; ++i) { // 外层循环 for (int j = 0; j < n - 1 - i; ++j) { // 内层循环 if (arr[j] > arr[j + 1]) { int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } } ``` #### 5. `main`函数及测试 在主函数中,我们可以创建一个数组,并调用`bubbleSort`函数对其进行排序。之后打印出排序后的数组以验证算法的正确性: ```c int main() { int arr[] = {5, 3, 8, 1, 2}; int n = sizeof(arr) / sizeof(arr[0]); bubbleSort(arr, n); printf(Sorted array: ); for (int i = 0; i < n; ++i) printf(%d , arr[i]); return 0; } ``` 这个`main.c`文件包含了冒泡排序的完整实现。运行该程序,你会看到未排序的数组被按照从小到大的顺序输出。 虽然冒泡排序效率不高,但它是学习和理解基本排序算法的良好起点。通过掌握冒泡排序原理及其C语言实现方式可以为理解和使用更复杂的排序方法奠定基础。
  • C中的练习:插入
    优质
    本文介绍了C语言中经典的排序算法之一——插入排序,并通过实例代码演示了如何实现该算法。适合初学者学习和实践。 在学习C语言的初期阶段,排序算法是一个重要的知识点。这里提供了一种插入排序算法的实现方法供广大学习者参考。
  • C中的练习:冒泡
    优质
    本篇教程介绍了C语言中经典的排序算法——冒泡排序。通过示例代码讲解了其工作原理和实现方法,适合初学者学习与实践。 在学习C语言初期,重要的知识点之一是排序算法。这里提供了一种冒泡排序算法的实现方法供广大学习者参考。