Advertisement

本次实验旨在研究中缀表达式转换为后缀表达式并进行数值计算的方法。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过键盘输入数学表达式,系统能够计算该表达式的数值结果并将其呈现出来;此外,系统还将原表达式转换成后缀表达式形式,然后利用后缀表达式进行计算,最终输出计算得到的数值结果。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目旨在实现算法将中缀表达式(常规数学表达式)转化为易于计算的后缀表达式,并直接求解其数值结果。 数据结构C++版可以将中缀表达式转换为后缀表达式,并使用后缀表达式求值。支持的运算符包括+、-、*、/、^以及括号(),同时支持小数、负数及多位数运算。
  • 优质
    本文介绍了一种算法,用于将中缀表达式(即通常的算术表达式)转化为计算机易于处理的后缀表达式,并详细说明了如何根据转化后的表达式进行计算。通过示例演示整个转换和求值过程。 这段文字描述的是如何在C++代码中实现将中缀表达式转换为后缀表达式,并进行求值的过程,涉及数据结构方面的知识。
  • .rar
    优质
    本资源介绍了一种将中缀表达式转换为后缀表达式的算法实现方法。适用于计算机科学及编程学习者,帮助理解编译原理中的语法处理技术。 将中缀表达式转换为后缀表达式,并进行计算;支持的函数包括:Abs(绝对值)、Power(幂运算)、Sqr(平方)以及 Sqrt(平方根)。在使用这些函数时,除了 Power 函数外其他都需要加括号。 后缀表示法中的运算符优先级如下: - 第1级: () - 从左到右 - 第4级:* - \ % - 从左到右 - 第5级: + - - 从左到右 关系运算符: * 第7级:< > <= >= 相等运算符: 位运算符: * 第9级:& * 第10级:^ * 第11级:| 逻辑运算符: * 第12级:&& * 第13级:||
  • 优质
    本教程介绍如何将中缀表达式(如常见的算术表达式)有效地转化为计算机易于解析的后缀表达式(逆波兰表示法),涵盖算法原理与实现步骤。 将中缀表达式转化为后缀表达式的数据结构试验报告一份。
  • 优质
    本文章介绍如何将中缀表达式转化为前缀表达式的步骤和方法,帮助读者理解并掌握这种编程与数学计算中的重要技能。 用C语言实现的表达式中缀转前缀算法涉及将给定的数学或逻辑表达式的常规书写形式(即操作数之间穿插运算符的形式)转换为一种先列出所有运算符,随后是相应操作数的形式。这种转变在编译器设计和某些计算问题解决上非常有用。 实现这一功能时,通常需要构建一个栈来帮助处理括号结构,并确保正确的数学优先级得到遵守。算法的主要步骤包括: 1. 读取输入的中缀表达式。 2. 将运算符、操作数以及必要的括号压入和弹出栈以重组为前缀形式。 3. 输出转换后的前缀表达式。 该过程需要仔细处理每种类型的符号,确保正确解析复杂的数学或逻辑关系。
  • C++
    优质
    本文介绍了如何使用C++编程语言将中缀表达式转换为后缀表达式的算法,并实现了对后缀表达式的求值过程。 如何将中缀表达式转换为后缀表达式并在C++中实现计算。
  • 及求报告
    优质
    本实验报告详细探讨了中缀表达式转换为后缀表达式的算法及其实现,并介绍了如何利用后缀表达式进行高效计算。通过编程实践,验证了该方法的有效性和实用性。 使用键盘输入表达式,计算其值并输出;将该表达式转化为后缀表达式,并输出转化后的结果;利用后缀表达式求解原始表达式的值并进行显示。
  • 自定义栈
    优质
    本项目介绍了一种利用自定义栈数据结构来实现中缀表达式到后缀表达式的转换,并计算该表达式的最终结果的方法。 自定义栈类(class stack)、中缀表达式转换为后缀表达式的类(class Middle_expressionToPost_expression)以及求解后缀表达式值的类(class Post_expression_value)。这涉及三个抽象数据类型的实现:首先是用于管理元素进出顺序的数据结构——栈;其次是将常见的数学或逻辑运算符从通常书写形式转化为计算机易于解析的形式,即从中缀表示转换为后缀表示的过程;最后是计算已转化后的后缀表达式的具体数值结果。
  • C++程序将
    优质
    本程序演示了如何使用C++编写算法,将常见的中缀表达式(如2 + 3 * 4)转换成易于计算的后缀表达式形式(如2 3 4 * +),便于计算机解析和执行。 本段落介绍了将中缀表达式转换为后缀表达式的算法。首先定义一个用于存放运算符的栈 opst,并设中缀表达式字符串为 char *infix,后缀表达式字符串为 char *postfix。转换的基本规则是把运算符移到它的两个操作数后面,并删除所有的括号。从头到尾扫描中缀表达式时,根据字符类型的不同进行处理:数字或小数点直接输出;对于运算符,则需要比较其优先级与栈顶元素的优先级来决定是否入栈或出栈。最后将生成的后缀表达式存储在字符数组中并输出。
  • (逆波兰)VC版
    优质
    本项目实现将中缀表达式转换为后缀表达式,并采用逆波兰表示法进行计算。使用VC++编写,适用于学习与实践数据结构和算法中的栈操作。 表达式求值的经典算法(逆波兰)可以实现以下功能:1. 将中缀表达式转换为后缀表达式;2. 对后缀表达式进行求值。