Advertisement

该模块提供0.9至5V电压的升压功能,并适用于CE8301芯片。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该升压模块,型号为0.9-5V,并配合CE8301模块使用,旨在提供电压提升功能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CE8301 0.9-5V
    优质
    CE8301是一款高效的升压转换器模块,适用于输入电压范围为0.9至5伏特的各种电子设备。它能够稳定输出电源,确保低功耗下的高性能表现。 升压模块0.9-5V CE8301是一款性能优越的电源转换器件。
  • 5V12V
    优质
    本设计提供了一种高效的5V至12V升压电路方案,适用于多种电子设备中需要电压提升的应用场景。通过优化电路结构与元件选择,实现高效率、低噪音及宽输入电压范围的电源转换功能。 由于电路需要24伏特和5伏特电压,并且每个电压有各自的地线,工作电流达到3安培,在设计并仿真该电路时遇到了问题:单独对两个部分进行仿真都没有问题,但当将它们合并后一起仿真就会出现问题。这是否是因为不同的地导致的呢?仿真的时候出现了错误信息。
  • MC34063包含Proteus仿真路图:5V24V
    优质
    本资源提供基于MC34063芯片设计的5V至24V升压电路的Proteus仿真电路图,适用于电源变换和电压提升应用。 由于5V转24V电压模块的压差较大,因此在网上很难找到现成的电路图。本人搜集了大量资料,设计了一套电路图,并通过Proteus软件进行了仿真验证。此外,还包含了PCB板原理图和PCB布局图。
  • 7.4V5V,8.4V转5V3A降规格书.pdf
    优质
    本文件详细介绍了适用于从7.4V到5V降压转换及8.4V转5V、输出电流高达3A的高效降压芯片的各项技术参数与应用指南。 PW2163 是一种高效的 500kHz 同步降压 DC-DC 转换器,能够输送高达 3A 的电流,并在 4.5V 至 18V 的宽输入电压范围内工作。它集成了主开关和同步开关,并具有非常低的 RDS(ON)以减少传导损耗。该转换器还具备较低的输出电压纹波以及适用于 500kHz 开关频率的小型外部电感器和电容器。此外,PW2163 采用瞬时 PWM 结构,能够实现快速瞬态响应,在高降压应用中表现出色。
  • 3.7V转3.3V降5V转3.3VIC.pdf
    优质
    本PDF文档详细介绍了3.7V至3.3V降压转换及5V至3.3V升压/降压集成电路的应用与设计原理,适用于电子设备电源管理。 3.7V 降压至 3.3V 的电路、5V 降压至 3.3V 的 IC、支持 3A 输出的降压芯片、适用于各种应用的高效率稳压芯片以及低功耗 LDO 芯片。此外,还有固定输出为 3.3V 的稳压器和升降压转换功能的电路可供选择。这些器件的选择依据包括具体的应用需求和技术规格说明。
  • 5V12.6V路图及三节锂池充方案.pdf
    优质
    本资料提供了一种将5V电压升压至12.6V的芯片电路设计方案,并包含适用于三节锂电池充电的具体实施方案。 本知识点将详细介绍如何使用5V升压至12.6V的芯片电路图以及如何利用PW4053和PW4203这两款芯片实现对三节锂电池的充电。 考虑到每节电池电压为3.7V,串联后的总电压达到11.1V。然而为了确保完全充满电,需要将充电电压提升至12.6V。因此需要一个能够将5V升压到这个值的电路设计来满足需求。PW4053是一款专为此目的而设计的芯片,它可以在输入为5V的情况下输出足够的电压以给三节锂电池充电。 另一方面,PW4203则适用于15至20伏特范围内的电源,并可以将该范围内任意电平降至适合一到三个串联电池使用的水平。这两款IC都支持高效率电流管理以及充放电模式切换,外围电路设计简洁且成本效益良好。 在实际应用中,例如笔记本电脑的USB接口或外部适配器等不同输入电压条件下(如5V、13V、15V和18V),PW4053与PW4203能够智能调节充电电流以避免对电源造成过大压力。特别是PW4203具备过压保护功能,可以防止因过高输入电压而导致的损坏。 对于进一步将电压转换为更低水平的需求(例如5V、6V或3.3V),可以通过使用LDO线性稳压器或者DC-DC降压转换器来实现。比如PW6513高耐压LDO支持高达40伏特输入,并提供过电流限制和软启动等保护机制。 在选择合适的DC-DC降压转换器时,如PW2162这款集成有同步整流技术的装置便是一个理想的选择,因为它能够处理从4.5V到16V范围内的宽泛电压变化并输出1V至15V之间的任意电平,并且效率高达96%。此外还有其他型号比如PW2163和PW2330等可供选择,它们在输入电压、输出电流及封装形式等方面有所不同。 总结起来,上述内容涵盖了设计针对三节锂电池充电电路所需的重要理论基础和技术细节,包括电池串联规则及其所需的充电电压要求;利用特定IC实现高效的升压与降压转换功能;以及如何通过适当的外围组件配置来确保系统的稳定性和高效性。
  • 5553V9V DC
    优质
    本设计介绍了一种利用555定时器集成电路构建的简单高效DC升压电路,能够将3V到9V的电源电压提升至更高水平,适用于各种需要提高输入电压的应用场景。 用555芯片设计的3V-9VDC升压电路。
  • 5V和3.7V降1.2V路图.pdf
    优质
    本PDF文档提供了一种将5V与3.7V电源电压降至稳定1.2V输出的电路设计方案及详细电路图,适用于电子设备中低压供电需求。 寻找适用于5V到1.2V及3.7V到1.2V降压的稳压芯片,包括大电流DC-DC解决方案、LDO(低压差线性稳压器)以及各种降压IC。需要选择能够提供至少3A输出电流并稳定在1.2V电压的芯片型号。请参考相关电路图和选型表来确定合适的LDO及降压IC产品。
  • 我改造艾默生C2448大房车行驶中将12V24V或48V,支持ACC控制等
    优质
    本作品是对艾默生C2448大功率升压模块进行升级改造后的成果,专为房车设计。它能在车辆行进间实现12V到24V或48V的电压提升,同时兼容ACC智能控制功能,确保高效、安全地满足各种用电需求。 我改装了艾默生C2448大功率升压模块,适用于房车行车充电,可以将12V电压提升至24V或48V,并支持ACC控制等功能。
  • MAX761
    优质
    简介:MAX761是一款高效升压转换器IC,适用于多种便携式应用。它能够将低电压电源提升至更高输出电压,具有高效率和稳定性,支持宽范围输入电压及可调输出电压设置。 MAX761组成的升压电路具有元件少、低功耗的特点。