Advertisement

基于补偿原理的开关电源无源共模干扰抑制技术

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探索了利用补偿原理减少开关电源中的无源共模电磁干扰的方法,旨在提高电路稳定性与效率。 本段落介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功应用于多种功率变换器拓扑中。理论与实验结果表明,该技术能有效减少电路中的高频传导共模干扰。其优势在于无需额外控制电路和辅助电源,不依赖于电源变换器其他部分的工作状态,具有结构简单、紧凑的特点。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探索了利用补偿原理减少开关电源中的无源共模电磁干扰的方法,旨在提高电路稳定性与效率。 本段落介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功应用于多种功率变换器拓扑中。理论与实验结果表明,该技术能有效减少电路中的高频传导共模干扰。其优势在于无需额外控制电路和辅助电源,不依赖于电源变换器其他部分的工作状态,具有结构简单、紧凑的特点。
  • EMC磁兼容中和差及其方法
    优质
    本文探讨了电磁兼容性(EMC)中常见的共模与差模干扰问题,并提出了有效的抑制策略和技术手段,旨在提高电子设备的抗干扰能力。 电器设备的电源线以及电话和其他通信线路通常包含至少两根导线用于电力或信号传输,并且在这些导线之外还有一条地线作为第三导体。电压和电流的变化通过这两根导线进行传输,可以分为两种形式:一种是差模干扰,即信号在这两条导线上往返传递;另一种是共模干扰,其中一条线路负责输出而另一条线路与地线一起承担回路作用。 例如,在某些情况下,蓝色的信号代表在两根导线之间来回传输的情况(差模);黄色的信号则表示通过一根导线和地线之间的路径进行传播的情形(共模)。无论是在电源还是通信线上出现的所有干扰都可以用这两种模式来描述:共模干扰指的是在线路与接地端或设备外壳间的非对称性传递,而差模则是指发生在电路内部线路之间的情况。
  • 子中反激式变换器(EMI)研究
    优质
    本研究聚焦于基础电子产品中的反激式变换器,探讨其产生的共模电磁干扰问题,并提出有效的抑制方法,以提升产品的电磁兼容性。 摘要:本段落分析了反激式变换器的噪声模型,并根据原边与副边的噪声回路特性提出了一种利用辅助绕组来调整变压器内部电位分布及分布电容的方法,以此改变噪声通路阻抗并优化原、副边间的噪声平衡,从而实现共模噪声的有效抑制。通过在一台50W反激式变换器上进行实验验证了上述分析的正确性。 1 引言 由于元器件数量少且成本低的特点,反激式变换器具有很高的性价比,在充电器、适配器及各类电器和仪表中的小型直流电源应用中广泛使用。近年来,随着电磁干扰标准变得越来越严格,关于反激式开关电源的电磁兼容性问题的研究也日益受到重视。
  • 什么是EMC中和差及其方法?
    优质
    本文探讨了电磁兼容性(EMC)中常见的共模干扰与差模干扰的概念、来源及危害,并介绍了有效抑制这两种干扰的方法。 电器设备的电源线、电话通信线路以及与其他设备或外围设备进行数据交换的通讯线路通常包含至少两根导线。这两根导线用于往返传输电力或信号,在这之外还有一条第三导体,即“地线”。电压和电流的变化通过这些导线传输时有两种形式:一种是使用两条独立的导线分别作为去路与回路进行数据交换,我们称之为“差模”;另一种则是利用两根导线中的任意一根做为信号输出线路而将另一条地线用作返回路径,这种模式被称为“共模”。以图示为例,蓝色线条表示的是在两条独立的导线上往返传输的数据流,“差模”的典型代表;黄色线条则显示了通过信号和地线进行回传的情况。
  • Buck路中纹波
    优质
    本研究探讨了在Buck电路中的开关电源系统中减少电压和电流纹波的技术方法。通过优化电路设计与控制策略,旨在提高系统的稳定性和效率。 本段落通过分析Buck电路中的元器件计算公式,推导出纹波电压和电流的计算方法,并根据影响因素对电感量和电容量的选择进行比较,从而得出抑制纹波的方法。
  • MATLAB/SIMULINK力系统与谐波
    优质
    本研究构建了基于MATLAB/Simulink平台的电力系统无功补偿及谐波抑制模型,旨在优化电能质量,提升电网效率。通过仿真分析验证了不同控制策略的效果,为实际应用提供理论依据和技术支持。 电力系统无功补偿和谐波抑制的MATLAB/SIMULINK模型研究
  • 谐波功功率应用研究
    优质
    本研究聚焦于电力系统中谐波问题和无功功率管理,探讨了先进的谐波抑制技术和无功补偿策略的实际应用与效果分析。 ### 谐波抑制与无功功率补偿技术的研究与应用 #### 一、引言 在现代电力系统中,随着电力电子技术的迅速发展,大量的非线性负载(如整流器、逆变器等)被广泛应用于工业生产和日常生活中。这些设备会产生大量谐波电流和电压,对电网造成严重干扰。此外,许多负载需要无功功率来维持正常运行,这给电网带来了额外的压力。因此,研究与应用谐波抑制技术和无功功率补偿技术变得尤为重要。 #### 二、谐波和无功功率的产生 1. **谐波的产生**: - **谐波源**:电力电子装置(例如整流器、逆变器)、变压器、发电机、电弧炉及日光灯等是主要的谐波源。 - **分类**:根据产生的性质,可以将这些设备分为两类——电流型和电压型。前者产生的谐波不受电网参数影响;后者则通过半导体开关切换产生谐波电压。 - **实例分析**:例如一家浙江玻璃厂由于大量使用电力电子装置和特种变压器产生了大量的谐波问题,导致了设备频繁报警甚至损坏,给企业带来了严重的经济损失。 2. **无功功率的产生**: - 许多负载(如电动机、变压器)在工作过程中不仅消耗有功功率,还需要额外的无功功率来建立磁场。这会导致电网中无功功率不平衡,并影响电力系统的稳定性和效率。 #### 三、谐波抑制技术 1. **传统LC滤波器**: - **原理**:通过电感和电容组合滤除特定频率的谐波。 - **优点**:结构简单,成本低廉。 - **缺点**:只能有效过滤特定频率的谐波,并且容易受电网参数变化影响,可能引发谐振。 2. **有源电力滤波器技术**: - **原理**:通过实时检测并产生相应的补偿电流来抵消谐波,实现动态滤波。 - **优点**:能够有效过滤多种频率的谐波,并具有良好的适应性。 - **应用案例**:采用混合型有源滤波器成功解决了某电力系统中的谐波问题,该系统表现出优异的性能。 #### 四、无功功率补偿技术 1. **静态无功补偿器(SVC)**: - **原理**:通过调节电抗器或电容器接入容量来改变系统的无功功率。 - **优点**:响应速度快,并能在短时间内提供所需的无功功率支持。 - **应用范围**:适用于快速无功补偿需求的电力系统。 2. **静止同步补偿器(STATCOM)**: - **原理**:基于电压源换流器(VSC),能够动态调节无功功率输出。 - **优点**:具有高精度控制能力,可以精确调控无功功率输出。 - **发展趋势**:随着电力电子技术的进步,STATCOM的应用越来越广泛。 #### 五、结论 通过对谐波抑制与无功功率补偿技术的研究和应用,不仅可以显著改善电力系统的运行质量,并提高能源利用效率以及减少经济损失。未来的发展趋势将是更加高效智能的电力电子器件和技术的使用,以及更精细控制系统的设计以应对日益复杂的电力系统需求。
  • PI和重复控策略APF有力滤波器:高效谐波
    优质
    本研究提出了一种结合比例积分(PI)与重复控制策略的APF有源电力滤波器,旨在提升其在电网中的谐波抑制和无功功率补偿性能。 基于PI+重复控制策略的APF有源电力滤波器实现了高效谐波抑制与无功补偿技术。该方法采用电流环重复控制,能够使总谐波畸变率(THD)低于1%,从而提高系统的电能质量。此外,通过结合传统的PI调节和重复控制系统的设计,进一步增强了APF在动态响应及稳态精度方面的性能表现。
  • Matlab/Simulink平APF SVPWM谐波
    优质
    本研究利用MATLAB/Simulink环境构建了两电平有源电力滤波器(APF)的SVPWM控制模型,专注于改善其在谐波抑制和无功功率补偿方面的性能。 这是基于MATLAB/Simulink的两电平有源滤波器(APF)仿真模型,通过FFT分析可以证明该模型能够有效治理电力系统的谐波问题并解决无功补偿问题。调制方式采用SVPWM,并已成功运行验证其有效性,值得一试。
  • Simulink平APF SVPWM谐波型.zip
    优质
    本资源提供了一种基于Simulink环境下的两电平有源功率因数校正(APF)SVPWM控制策略,专注于谐波抑制和无功补偿的建模与仿真。 基于Simulink的两电平有源电力滤波器(APF)SVPWM谐波治理抑制和无功功率补偿模型包含了对电力系统中常见问题如谐波污染及无功功率需求的有效解决方案。该模型利用先进的开关矢量脉宽调制技术,旨在提高电网质量并优化能源使用效率。