Advertisement

基于PID的神经元网络解耦控制算法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种结合PID控制器与神经元网络的解耦控制算法,旨在提高复杂系统控制精度和响应速度。通过优化各输入输出通道间的独立性,该方法有效解决了多变量系统的非线性和强耦合问题。 这是PID神经元网络解耦控制算法的MATLAB源代码,欢迎大家参考!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PID
    优质
    本研究提出了一种结合PID控制器与神经元网络的解耦控制算法,旨在提高复杂系统控制精度和响应速度。通过优化各输入输出通道间的独立性,该方法有效解决了多变量系统的非线性和强耦合问题。 这是PID神经元网络解耦控制算法的MATLAB源代码,欢迎大家参考!
  • MATLABPID
    优质
    本研究提出了一种基于MATLAB平台的PID神经元网络解耦控制算法,结合了传统PID控制与现代神经网络技术的优势,有效提升了复杂系统的控制性能。 用于多变量控制系统的PID神经元网络解耦控制的MATLAB算法。
  • PID多变量系统
    优质
    本研究提出了一种创新性的PID神经元网络算法,专门用于解决复杂多变量系统的解耦控制问题。通过优化各输入输出间的独立性,显著提升了系统响应速度和稳定性,在工业自动化领域具有广泛应用前景。 本资源介绍的是PID神经元网络解耦控制算法在多变量系统控制中的应用,并通过Matlab进行仿真实现。基于PID神经元网络控制器的原理,在Matlab中编写程序以实现对多变量系统的控制。
  • PID多变量系统.zip
    优质
    本项目提出了基于PID神经元网络的创新性解耦控制算法,特别适用于复杂多变量系统的优化与控制。该方法结合了传统PID控制器的优势和现代神经网络技术的灵活性,旨在提供更精确、响应更快且适应性强的控制系统解决方案。 MATLAB源程序案例分析-PID神经元网络解耦控制算法_多变量系统控制.zip
  • PID多变量系统.rar
    优质
    本研究提出了一种结合PID控制器与神经元网络技术的新型多变量系统解耦控制方法。该算法通过优化各输入输出通道间的独立性,显著提升了复杂工业过程中的控制系统性能和稳定性。 本资料仅供参考学习。
  • BP与自适应PID
    优质
    本研究探讨了将BP神经网络应用于神经元网络,并结合自适应PID控制算法优化控制系统性能的方法。通过模拟实验验证其在动态系统中的有效性及优越性。 在当前的 Simulink 模块库中找不到关于 BP 神经网络的封装模块,因此单独使用这些模块无法完成完美的设计仿真。这时需要用到 S 函数来连接 MATLAB 和 Simulink 的程序,并在此构造神经网络的学习算法。学习速率设为 xite,惯性因子设为 alfa;隐含层加权系数记作 wi,输出层加权系数记作 wo。 在进行仿真之前需要先初始化参数和变量。当仿真开始后,首先建立一个传递函数模型,并对其进行离散化处理以提取分子分母项。三个输出值分别对应 PID 控制器中的比例增益 Kp、积分增益 Ki 和微分增益 Kd 参数。 接下来是不断更新这些参数的过程:通过反复进行数据方向传播和误差对比,每次循环后都会自动调整每个神经元的权值和阈值,直到找到最佳解或达到预定迭代次数为止。
  • 混沌粒子群优化PID
    优质
    本研究提出了一种结合混沌粒子群优化与神经网络技术的新型PID解耦控制系统,旨在提高复杂工业过程中的控制精度和稳定性。通过模拟实验验证了该方法的有效性及优越性。 神经网络PID(PIDNN)是一种结合了传统PID控制与现代神经网络技术优点的新型模型。然而,传统的反向传播算法(BP)限制了其性能表现。为了有效应对非线性、大时滞以及强耦合系统的挑战,我们提出了一种基于混沌粒子群优化方法的改进型神经网络PID控制器。 通过用混沌粒子群算法替代原有的BP算法来调整各神经元之间的权重,可以实现更快速和有效的解耦控制效果。仿真研究显示,相较于传统的BP算法,本段落所提出的策略在动态响应及稳态性能方面均有显著提升。
  • PID
    优质
    本研究提出了一种创新性的基于神经网络优化的传统PID(比例-积分-微分)控制器的方法,以提高控制系统性能。通过智能调整PID参数,该方法能够有效解决传统PID控制中遇到的问题,如参数整定困难和对系统模型变化的适应性差等,特别适用于复杂动态系统的精确控制。 利用神经网络反向传播方法来调整比例积分控制器的参数以实现优化。
  • BP_PID_PID_BP-PID
    优质
    简介:BP_PID是一种结合了传统PID控制与人工神经网络技术的先进控制系统。通过运用BP算法优化PID参数,该方法能够有效改善系统动态性能和鲁棒性,在工业自动化领域展现出广阔应用前景。 建立神经网络PID模型的仿真可以有效控制参数。
  • RBFPID
    优质
    本研究提出了一种结合径向基函数(RBF)神经网络与传统比例-积分-微分(PID)控制器的方法,以优化控制系统性能。通过利用RBF神经网络自适应学习能力调整PID参数,该方法能够在动态变化的环境中实现更精确、稳定的控制效果。 使用MATLAB的M文件实现基于RBF神经网络的PID控制,并进行图形绘制。