Advertisement

基于STM32F103微控制器的Buck电路PI控制策略

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目研究了基于STM32F103微控制器的Buck电路比例积分(PI)控制策略,旨在优化电源转换效率和稳定性。 在STM32中使用定时器生成PWM信号,并通过周期中断更新调制波。代码提供了闭环和开环实验选项,在闭环实验中可以选择电压或电流控制模式。此外,采集到的ADC数据可以通过DAC输出,便于调试。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F103BuckPI
    优质
    本项目研究了基于STM32F103微控制器的Buck电路比例积分(PI)控制策略,旨在优化电源转换效率和稳定性。 在STM32中使用定时器生成PWM信号,并通过周期中断更新调制波。代码提供了闭环和开环实验选项,在闭环实验中可以选择电压或电流控制模式。此外,采集到的ADC数据可以通过DAC输出,便于调试。
  • MATLAB仿真Buck双闭环分析
    优质
    本研究探讨了在MATLAB环境下对Buck变换器采用双闭环控制策略的仿真分析,旨在优化其动态响应和稳态性能。 本段落研究了基于MATLAB仿真的Buck电路双闭环控制策略,并设计与分析了双闭环Buck电路的MATLAB仿真模型。该模型涵盖了开关模式控制以及输出电压稳定等方面的内容,通过仿真验证了双闭环控制系统在提高系统响应速度和稳定性方面的有效性。
  • Buck PI 闭环_Buck 单相闭环
    优质
    本研究探讨了PI控制器在Buck变换器中的应用,重点分析了单相Buck电路的闭环控制系统设计与性能优化。 buck_PI_buck闭环PI控制_buck闭环_buckpicontrol_buck单相buck电路闭环电路_buck电路pi参数_源码.zip
  • STM32F103AGV智能车系统
    优质
    本项目设计了一套基于STM32F103微控制器的AGV(自动导引运输车)智能控制系统电路,旨在实现高效、精确的导航与操作。该系统整合了先进的传感技术和控制算法,以确保AGV在各种环境下的稳定运行和灵活调度。 自己设计并制作了一款基于STM32F103C8T6的智能车控制电路,并配有相关代码。该项目使用了广州联网科技提供的AGV模块,可以根据个人需求进行适当调整。
  • PIDBuck
    优质
    本项目研究并实现了一种基于PID控制算法的Buck直流降压变换器。通过优化PID参数,有效提升了电路稳态和动态性能,实现了高效稳定的电压调节。 在Simulink平台上实现基于PID控制器的Buck电路设计,该设计具有优异的动态性能与稳态性能。
  • STM32F103子秤
    优质
    本项目设计了一款基于STM32F103微控制器的高精度电子秤,集成了称重传感器与LCD显示模块,适用于实验室和日常生活中的精确测量需求。 基于STM32F103的电子秤可以实现两种模式之间的切换。第一种模式将称量重量转换为千克(KG)单位,并支持实时重量显示、单价设置以及总金额计算等功能,其中单价可以通过一个3*4矩阵键盘进行两位小数精度的设置,并且具备去毛重的功能。 第二种模式则以克(g)作为重量单位,允许用户设定称重阈值上限和下限。如果检测到物体的重量低于阈值下限或超过阈值上限时,内置蜂鸣器将发出警报提示。同时该模式也支持去毛重操作。 无论在两种模式中的哪一种,进入后都可以执行校准清零的操作以确保称量结果具有较高的准确性。
  • MATLAB-Simulink仿真含PI、BoostBuck
    优质
    本项目运用MATLAB-Simulink平台,设计并仿真了包含PI控制算法及Boost与Buck直流变换器在内的电力电子系统,旨在优化电源管理效率。 MATLAB-Simulink仿真包括PI控制器、boost控制器和buck控制。
  • SVPWM平APF双重模糊PI
    优质
    本文提出了一种基于空间矢量脉宽调制(SVPWM)的三电平有源电力滤波器(APF)双重模糊PI控制策略,旨在优化其谐波补偿性能和效率。 为解决传统比例积分控制参数难以调整及动、静态性能变差导致补偿效果不佳的问题,本段落提出了一种改进的双环重复模糊PI控制方法。该方法结合了重复控制与PI控制的优点,实现了控制器参数的动态调节,并通过采用一种改进后的60°坐标系下三电平SVPWM技术减少了传统三电平SVPWM计算量。 实验结果显示,在电流内环使用传统的PI控制器时,总谐波畸变率为6.28%;而当电流内环控制采用双环重复模糊PI控制器后,电源侧的电流总谐波畸变率显著降低至0.73%。这一控制策略使得理论模型更加接近实际非理想条件下的模型,并提高了谐波电流补偿精度。
  • MATLAB 2021a池充放Simulink仿真(含PI、Boost及Buck
    优质
    本项目利用MATLAB R2021a进行电池充放电控制系统设计与仿真实验,涵盖PI调节器、Boost升压和Buck降压电路模型。通过Simulink平台搭建复杂电气系统仿真环境,深入探究各控制策略在实际应用中的表现及优化方法。 电池充放电控制的Simulink仿真包括PI控制器、Boost控制器和Buck控制器,在Matlab 2021a环境下进行测试。
  • 下垂网并网前同步
    优质
    本研究提出了一种创新性的基于下垂控制的微电网并网前同步控制策略,旨在实现平滑、高效的微电网与主电网切换过程。该方法通过调整电压和频率特性来优化负载分配,并确保无缝连接时系统的稳定性与可靠性,为可再生能源的有效整合提供技术支持。 微电网可以运行在并网或孤岛两种模式下。当其处于孤岛状态时,由于支撑电压的逆变器(VSI)依据下垂特性工作,会导致微电网电压与大电网电压出现偏差。因此,在切换到并网模式的过程中解决两者的同步问题至关重要,以确保无缝转换。 本段落提出了一种基于三相软件锁相环(SPLL)理念和下垂控制的预同步策略来实现这一目标。该方法能够使微电网在从孤岛状态转为并网时避免产生冲击电流,并顺利完成模式切换。通过仿真与实验测试,证明了这种控制策略的有效性。 1. 引言 微电网是由负载及多个分布式电源构成的小型电力系统,其中三相逆变器作为主要的接口设备,在实现不同运行模式间的平滑过渡中扮演着重要角色。