Advertisement

STM32F103使用RTC实现闹钟唤醒单片机待机模式RTC_Alarm.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一个基于STM32F103微控制器的项目示例,通过RTC模块设定闹钟功能,在特定时间自动唤醒处于待机状态的单片机,适用于低功耗设计需求。 网上资源较为混乱,此模块改编自Keil下的例程,并已调试验证通过。该模块用于启动STM32的AWU功能,采用LSI作为RTC时钟源,实现周期性待机与唤醒单片机的功能移植。 使用方法如下: 1. 调用`RTC_Alarm_Configuration`配置并启动相关函数。 2. 修改工作时间WORK_TIMES和待机时间STANDBY_TIMES的设置(单位为秒s),32位闹钟寄存器范围从0到4294967295,即最长可设时间为约7158万分钟。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F103使RTCRTC_Alarm.rar
    优质
    本资源提供了一个基于STM32F103微控制器的项目示例,通过RTC模块设定闹钟功能,在特定时间自动唤醒处于待机状态的单片机,适用于低功耗设计需求。 网上资源较为混乱,此模块改编自Keil下的例程,并已调试验证通过。该模块用于启动STM32的AWU功能,采用LSI作为RTC时钟源,实现周期性待机与唤醒单片机的功能移植。 使用方法如下: 1. 调用`RTC_Alarm_Configuration`配置并启动相关函数。 2. 修改工作时间WORK_TIMES和待机时间STANDBY_TIMES的设置(单位为秒s),32位闹钟寄存器范围从0到4294967295,即最长可设时间为约7158万分钟。
  • STM32F103RTCRTC_Alarm.rar
    优质
    本资源提供基于STM32F103系列微控制器使用实时时钟(RTC)模块设置闹钟功能,以唤醒处于待机模式的单片机。包含详细代码及电路图示例,便于理解与实现低功耗设计。 网上资源比较混乱,这段内容改编自Keil下的例程,并已调试验证通过。该模块用于启动STM32的AWU功能,采用LSI作为RTC时钟,实现周期性待机和唤醒单片机的功能移植。 使用方法如下: 1. 调用`RTC_Alarm_Configuration`配置启动函数。 2. 修改工作时间WORK_TIMES、待机时间STANDBY_TIMES,单位为秒s。设置的闹钟寄存器是32位的,取值范围从0到4294967295秒(即约71582788.25分钟)。
  • STM32F407电子RTC验.rar
    优质
    本资源提供了一个基于STM32F407微控制器实现电子RTC闹钟唤醒待机模式的完整实验项目,包括硬件设计、软件编程及详细的文档说明。 电子-RTC闹钟唤醒待机模式实验STM32F407.rar,单片机/嵌入式STM32-F3/F4/F7/H7
  • STM32L431通过低功耗运行,并利引脚与RTC进行
    优质
    本项目介绍如何使用STM32L431微控制器进入待机模式以节省能量,同时展示如何设置外部中断和实时时钟(RTC)闹钟来有效唤醒系统。 完整的工程代码包括Keil项目和Cubemx配置,在运行过程中每分钟会自动唤醒一次,并且在此期间也可以通过wakeup引脚进行外部唤醒操作。
  • STM32F407电子RTC验.rar
    优质
    本资源为STM32F407微控制器实现电子RTC闹钟唤醒停机模式的实验文件,适用于嵌入式系统开发学习与实践。 电子-RTC闹钟唤醒停止模式实验STM32F407.rar,单片机/嵌入式STM32-F3/F4/F7/H7
  • RTC.rar
    优质
    本资源包提供了一种有效的RTC(实时时钟)待机唤醒解决方案,适用于需要低功耗和定时功能的应用场景。包含详细代码与文档说明。 STM32F103ZET6单片机(正点原子战舰开发板)的待机唤醒功能实现方法。
  • STM32F030C8T6在RTC下的应
    优质
    本文介绍了如何使用STM32F030C8T6微控制器实现RTC唤醒待机模式的应用,探讨了低功耗设计和定时器功能。 STM32有三种低功耗模式: 1. 睡眠模式:内核停止运行,但外设如NVIC(嵌套向量中断控制器)以及系统时钟Systick仍然保持工作状态。 2. 停止模式:此时所有时钟均被关闭;然而,1.8V的内核电源仍处于活动状态。PLL(相位锁定环)、HIS(高速内部振荡器)和HSERC(高速外部振荡器)的功能都被禁止了,并且寄存器及SRAM中的数据内容得以保留。 3. 待机模式:在该模式下,1.8V的内核电源被完全关闭。此时仅有备份寄存器与待机电路继续供电工作;然而,这会导致所有寄存器和SRAM中存储的数据丢失。此模式实现了最低限度的能量消耗。
  • STM32F3RTC中断
    优质
    本文详细介绍如何使用STM32F3系列微控制器中的实时时钟(RTC)模块设置闹钟及实现系统唤醒功能,并阐述了相关中断处理机制。 STM32F3实时时钟RTC是一种高性能的实时计时模块,并具备闹钟与唤醒中断功能。本段落将详细解析有关STM32F3 RTC的知识点,包括使用步骤、配置方法以及具体应用。 一、RTC的基本操作流程 利用STM32F3 RTCC需要遵循以下主要步骤: 1. 启用PWR时钟和备份区数据访问。 2. 如需采用外部低速振荡器(LSE),则打开并等待其稳定运行。 3. 选择及启用RTC的时钟源,确保同步完成。 4. 设定时间格式、分频系数等参数。 5. 根据需求调整日期、时间和闹钟设置,并配置唤醒与输出选项。 6. 配置所需的中断类型(如报警中断——EXTI线17;监控及时间戳事件——EXTI线19;唤醒中断——EXTI线20)并开启。 二、RTC时钟源的设定 RTC模块能够选择内部或外部振荡器作为其工作频率。内部选项为HSI,而外部则可以是LSE或者HSE类型。 在进行具体配置前,请先激活PWR和备份存储区访问权限,并随后选定及启动所需的RTC时钟资源等待同步完成。 三、闹钟与唤醒中断的设置 这两个功能允许用户设定特定时间点触发相应事件。通过定义条件并编写对应的处理程序来实现这些特性。 四、日期与时辰信息配置 该模块支持对年月日以及小时分钟秒等数据进行编程操作,以便提供精确的时间显示或记录服务。 五、中断机制的定制化设置 RTC可生成多种类型的中断信号(如闹钟触发和唤醒事件)。通过指定条件并编写相应的处理函数来完成这一过程。 六、实际应用案例 在众多领域中都能见到STM32F3 RTC的身影,比如智能家居设备、汽车电子系统及工业自动化控制等。其高精度计时能力为各种应用场景提供了坚实的基础保障。
  • STM32低功耗下的RTC验与测试
    优质
    本实验研究了在STM32微控制器处于低功耗待机模式时,实时时钟(RTC)如何有效唤醒系统,并进行了详细的性能测试。 使用STM32F102R8T6通过串口打印输出字符串后进入待机状态,在此状态下耗电量为4微安。