Advertisement

US级定时的Systick定时器应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了STM32微控制器中US级精度的SysTick定时器的应用方法,包括其配置和使用技巧,帮助开发者实现精确的时间管理和任务调度。 systick定时器用于微秒级的定时任务。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • USSystick
    优质
    本文介绍了STM32微控制器中US级精度的SysTick定时器的应用方法,包括其配置和使用技巧,帮助开发者实现精确的时间管理和任务调度。 systick定时器用于微秒级的定时任务。
  • STM32 SysTick 系统
    优质
    简介:STM32 SysTick定时器是Cortex-M内核的标准组成部分,提供了一个独立于硬件架构的基本定时功能,广泛应用于RTOS中的时间管理及任务调度。 STM32 SysTick系统定时器应用代码已编译成功!
  • STM32学习记录—SysTick
    优质
    本篇博客详细记录了作者在学习STM32微控制器过程中关于SysTick定时器的相关内容,包括其工作原理、配置方法及应用示例。 SysTick定时器是一个24位的倒计数定时器,在STM32单片机系统中扮演着重要角色。当计数值减至0后,它会自动从RELOAD寄存器重新加载初始值,并继续循环计数,除非在SysTick控制及状态寄存器中的使能位被清除。 SysTick定时器有以下几个关键用途: 1. 生成操作系统的时钟节拍:嵌入式系统中通常需要一个定时器来产生滴答中断作为时间基准。由于SysTick与NVIC紧密集成,它可以触发SYSTICK异常(异常号15),从而提供稳定的时钟节拍。 2. 方便代码移植性:Cortex-M3处理器内建了SysTick定时器,使得基于此处理器的软件在不同设备间易于移植,因为所有Cortex-M3芯片都包含这个定时器,并且使用方式和处理逻辑保持一致。 3. 时间测量与闹钟功能:除了用于操作系统之外,SysTick还可以用作时间测量或设定闹钟的功能。不过需要注意的是,在调试模式下处理器停止运行时,SysTick也会暂停计数。 要使SysTick定时器正常工作,需要执行以下步骤: - 配置计数器时钟源:通过设置CTRL寄存器中的CLKSOURCE位。 - 设置重载值:在RELOAD寄存器中设定初始值。 - 清除COUNTFLAG标志位:可通过读取或写入SysTick控制及状态寄存器(STCSR)或当前值寄存器(STCVR)实现。 - 启动定时器:设置CTRL寄存器中的ENABLE位以启动计时操作。 - 如果需要中断功能,还需开启相应的中断,并在服务例程中处理。 为了将SysTick用作系统时钟源: 1. 将STCSR的TICKINT位置为启用状态; 2. 若使用重定位向量表,则需设置SysTick异常的向量地址及提供相应服务例程入口点。 此外,SysTick还可以用来实现延时功能。这可以通过查询方式或中断方式来完成:查询模式是通过不断检查COUNTFLAG标志位判断计数是否结束;而中断模式则是在初始化阶段设定好定时值和中断,并在溢出时由相应的中断服务程序处理延时期满。 例如,以下是一个简单的配置函数示例,用于设置SysTick每1毫秒产生一次中断(假设系统主频为72MHz): ```c void SysTick_Configuration(void){ // 选择AHB总线作为计数器时钟源 SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK); // 设置SysTick优先级为3 NVIC_SystemHandlerPriorityConfig(SystemHandler_SysTick, 7); // 每毫秒触发中断,假设系统时钟频率为72MHz SysTick_SetReload(72000); // 启用SysTick的中断功能 SysTick_ITConfig(ENABLE); } ``` 以上内容概述了STM32单片机中SysTick定时器的基本知识及其应用。它在嵌入式系统开发过程中非常重要,提供了可靠的时间管理和同步机制支持。
  • 嵌入式初学指南四——SysTick
    优质
    本指南深入浅出地介绍嵌入式系统中常用的SysTick定时器,帮助初学者掌握其配置与应用技巧,是学习嵌入式开发的基础教程之一。 这篇文章主要分析了系统的滴答时钟。内容涵盖了SysTick时钟的基本概念、原理以及在HAL库开发过程中常用的函数。SysTick定时器与系统时钟有所不同,但两者之间存在直接联系,具体细节可参考相关原理图。
  • STM32F4 SysTick函数配置及精准毫秒延迟实现
    优质
    本文介绍了如何在STM32F4微控制器上配置SysTick定时器以实现精确的毫秒级延时功能,详细讲解了其工作原理和应用方法。 使用STM32F4的SysTick定时器配置延时函数时,请注意根据所用开发板的晶振频率调整stm32f4xx.h文件中的HSE_VALUE宏定义以及system_stm32f4xx.c文件中的PLL_M宏定义。
  • 42.N32G43X-SysTick实现延迟例程.rar
    优质
    本资源提供了一个使用STM32F10x系列微控制器中的SysTick定时器来实现精确延时功能的示例代码,适用于嵌入式系统开发。文件内含详细注释和完整工程配置。 在嵌入式系统开发过程中,微控制器(MCU)中的定时器是不可或缺的组件之一,用于执行计数、定时以及中断服务等多种时间相关的任务。国民技术N32G43X系列是一款高性能的基于Arm Cortex-M4内核的32位微控制器,其内部集成了多种定时器功能,包括我们今天要讨论的SysTick定时器。 SysTick是Cortex-M处理器系列中内置的一个实时计时器模块,常用于实现系统延迟及时间基准。在N32G43X芯片上使用SysTick可以完成微秒和毫秒级别的精确延时设置,这对于需要高精度时间控制的应用场景来说至关重要。 1. **SysTick定义与配置**: SysTick定时器由三个主要寄存器构成:控制寄存器(SYST_CTRL)、当前值寄存器(SYST_RVR)及补偿值寄存器(SYST_CVR)。通过这些寄存器的设置,可以开启或关闭SysTick计时功能,并设定其周期时间。在N32G43X中配置SysTick通常包括确定合适的定时周期并启用该计数器。 2. **延迟实现**: 实现微秒和毫秒级别的延时需要首先了解系统的实际运行频率,这可能是由外部晶振、内部RC震荡源或其他时钟来源决定的。根据不同的系统时钟速度进行适当的设置。 - 微秒级(US)延时:配置SysTick为每10微秒产生一次中断的方式可以实现精确控制。计算出对应于所需时间长度的计数值,并将其写入SYST_RVR寄存器中。 - 毫秒级(MS)延时:设定SysTick周期为1毫秒,通过循环等待中断来累计所需的总延迟时间。 3. **中断处理**: 当SysTick定时器达到预设值后会触发一个硬件中断。在对应的ISR(Interrupt Service Routine)中需要清除计数器并将新的值重新加载到寄存器里以维持连续的延时输出。同时,还需要更新全局变量来记录已经过去了多少毫秒或微秒。 4. **延迟函数**: 在C语言编程环境中可以编写两个实用的函数:`delay_ms(unsigned int ms)`和`delay_us(unsigned int us)`. 这些函数根据给定的时间参数以及当前系统时钟配置SysTick,并等待中断完成指定延时期间。这些功能通常会涉及到对寄存器的操作及对于ISR状态的检查与处理。 5. **注意事项**: 由于SysTick是一个全局性定时器,可能会与其他硬件中断产生冲突,在使用它来进行延迟操作的时候必须确保不会影响到其他关键任务。 在需要非常高精度的应用场景下,考虑到时钟抖动和处理器开销等因素的影响,实际的延时时间可能存在一些偏差。因此可能还需要进行额外校准或者选择更高精度的定时器。 通过合理配置与编程技巧,在国民技术N32G43X系列微控制器上利用SysTick实现微秒及毫秒级别的精确延迟是完全可行且高效的解决方案,适用于广泛的实时应用需求场景中。
  • 基础示例——SysTick(系统滴答)操作
    优质
    本教程详细介绍了STM32微控制器中SysTick(系统滴答定时器)的基本概念、配置步骤及应用实例,帮助初学者掌握其使用方法。 使用STM32单片机进行系统时钟操作的程序编写规范且详细注释,可作为很好的参考。
  • STM326与7
    优质
    本简介探讨了如何在STM32微控制器中配置和使用定时器6与定时器7,涵盖基本设置、中断处理及常见应用场景。 程序使用了STM32的定时器6和定时器7,在中断中控制两个LED灯的亮灭,可以作为使用这两个定时器的示例。
  • FluentScheduler示例
    优质
    本篇文章将详细介绍如何使用FluentScheduler框架进行任务调度,并提供实用的代码示例来帮助读者更好地理解和应用该库。 .NET定时任务执行管理器开源组件FluentScheduler使用例子。
  • C#微秒
    优质
    C#微秒级定时器是一款精准度极高的时间管理工具,适用于需要精确计时的应用场景。它支持微秒级别的精度设置,能够帮助开发者实现复杂的时间调度任务。 我实现了一个微秒级计时器的类,其风格与C#自带的定时器类似,误差应该在1毫秒以内。如果要达到更高的精确度,则需要使用硬件计时器。