Advertisement

mpi_有限差分_seismic_cpml_三维正演_三维CPML并行计算

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于三维地震模拟中的MPI有限差分法及三维完美匹配层(CPML)技术的应用与优化,并探讨其在大规模并行计算环境下的实现。 三维有限差分地震波正演模拟程序采用时间二阶、空间十阶的算法,并使用MPI进行并行计算。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • mpi__seismic_cpml__CPML
    优质
    本研究聚焦于三维地震模拟中的MPI有限差分法及三维完美匹配层(CPML)技术的应用与优化,并探讨其在大规模并行计算环境下的实现。 三维有限差分地震波正演模拟程序采用时间二阶、空间十阶的算法,并使用MPI进行并行计算。
  • 、全波形反及逆时偏移
    优质
    本研究聚焦于地震数据处理中的核心算法,包括三维有限差分正演模拟、全波形反演以及逆时偏移技术,深入探讨这些方法在提高地下结构成像精度和效率方面的应用与挑战。 在地球物理领域,尤其是石油勘探及地质构造分析方面,三维有限差分正演、全波形反演(FWI)与逆时偏移(RTM)是至关重要的技术手段。这些方法帮助科学家们解析地下复杂结构,并提高资源探测的精确度。 三维有限差分正演是一种模拟地震波动传播过程的数值算法。它通过将连续波动方程离散化为一系列网格点上的代数方程式来实现计算,这种方法能够考虑空间和时间的变化,从而准确地计算出地震波在三维空间中的路径。通常情况下,这种技术被用来预测地震响应,并与实际观测数据进行对比分析,为后续的反演工作奠定基础。 全波形反演是一种优化策略,旨在通过最小化实测地震记录与模拟结果之间的差异来推断地下介质的具体物理特性(如速度、密度等)。FWI不仅关注于地震波抵达时间的信息,还利用整个地震信号的特点——包括振幅和频率信息。这种技术能够生成更为精细的地下图像,但同时也面临着高度非线性和对初始模型敏感性的挑战。 逆时偏移是一种基于波动方程原理进行地震成像的技术,它通过将地震波向前传播至地表再沿接收路径反向传播的方式工作。这一过程反复迭代直至获得最佳匹配图像为止。RTM技术能够提供高分辨率的地下结构图象,并特别适用于复杂地质环境下的探测任务。 “manual_sava.pdf”可能是一份关于SAVA(Seismic Acoustic and Anisotropic Viscous Attenuation)软件的手册,其中详细介绍了如何使用该工具进行三维地震建模、FWI及RTM等操作。而“SAVA-master”则可能是实现这些算法的源代码库。 掌握并理解上述技术对于地球物理学家和地质工程师而言至关重要,因为它们是现代地震成像与储层探测的核心工具之一。通过应用这些方法,我们能够深入解析地下结构,并提高油气勘探的成功率;同时也可以将其应用于地质灾害预警及环境监测等领域。
  • SAVA_模拟_
    优质
    SAVA_三维有限差分模拟_是一款用于地质、地震学及石油勘探领域的专业软件,通过精确的数值方法来模拟地下结构和波传播现象。 SAVA是一款用于三维时域弹性有限差分建模和反演的代码,适用于具有高达21个弹性常数的一般各向异性介质。目前正在开发一个开源且模块化程度更高的SAVA版本。
  • 3D Frames 变形 Fortran 桁架
    优质
    3D Frames变形与分析采用Fortran编程实现,专注于三维桁架结构的力学性能评估,利用有限差分法进行精确计算。 在IT行业中,尤其是在科学计算与工程模拟领域,三维模型的分析及模拟至关重要。本话题聚焦于“3D_frames_变形_三维fortran_三维桁架_有限差分”,涉及几个重要的技术概念,将逐一深入探讨。 首先,三维桁架是一种常见的结构元素,在构建复杂工程结构简化模型中广泛应用。它由一系列杆件连接而成,形成空间网格,并能承受拉伸、压缩和剪切等各类载荷。在建筑、桥梁及航空航天等领域,三维桁架的分析对预测其稳定性和安全性至关重要。 其次,三维Fortran是用于科学计算的一种编程语言,是对Fortran的扩展,在处理多维数组与复杂科学运算方面具有显著优势。Fortran起源于20世纪50年代,旨在简化数值计算中的程序编写工作。在3D框架变形的计算中,Fortran能够高效地执行大量矩阵操作和循环结构,并实现高效的并行计算,非常适合此类复杂的数值模拟任务。 此外,有限差分法是求解偏微分方程的一种常用数值方法,在三维桁架变形分析过程中扮演着重要角色。该方法通过将连续物理区域离散化为一系列小网格或“帧”,利用这些网格点上的函数值来近似原方程中的导数。这种方法直观易懂,特别适用于计算机解决无法解析的复杂问题。 具体到3D_frames.f90源代码文件中,我们可以期望看到定义结构几何信息(如节点坐标、杆件连接关系)、设定边界条件(例如固定端和荷载等)以及计算节点间距离构建有限差分矩阵的相关程序。此外,该程序还可能包括求解线性系统以获得位移情况,并进行后处理部分生成变形图。 此项目为学习者提供了一个实用的教学案例,使其能够理解和应用有限差分法解决实际的三维结构问题。通过阅读和理解3D_frames.f90代码内容,不仅可掌握Fortran编程基础技能,还能深入了解该方法在工程领域中的具体应用场景,并有助于提升科学计算能力。 综上所述,此案例强调了数值分析技术对于处理现实世界复杂问题的重要性,尤其是在那些不适合解析求解的三维结构分析方面。
  • 地震模拟的程序
    优质
    本项目开发了一套用于地震波传播三维正演模拟的高效并行计算程序,旨在加速复杂地质模型下的地震数据处理与分析。 地震三维正演模拟并行计算程序使用粘弹性波动方程,在Linux环境下运行需要安装并行环境,例如MPICH。
  • CFDTD3d.zip_FDTD_共形_FDTD_saddlexfl_
    优质
    本资源提供一个名为CFDTD3d的三维FDTD(时域有限差分法)仿真工具包,支持共形FDTD技术,并包含saddlexfl等核心文件。适用于电磁场模拟和研究。 三维共形时域有限差分方法非常实用,对于解决三维FDTD算法问题具有重要的实际价值。
  • 基于NVIDIA GPU加速的二地震模拟软件
    优质
    这是一款利用NVIDIA GPU加速技术开发的高效软件工具,专注于进行二维及三维地震有限差分法正演数值模拟,助力地球物理研究与勘探工作。 在现代地球物理勘探领域,高精度的地震成像技术是获取地下地质结构的关键手段之一。本段落将详细介绍基于NVIDIA GPU加速的各向异性二维三维地震有限差分正演模拟软件,该软件广泛应用于地质建模、地震数据处理及资源探测等领域。 首先需要理解“各向异性”这一概念,在地球物理学中指的是地层对地震波传播特性在不同方向上的差异。VTI(垂直各向异性)介质是一种特定类型,其特点是速度沿垂直方向与水平方向存在差别,常见于具有层状结构的地层如沉积岩等。这种模型对于解释地震资料非常重要,因为它能更准确地反映地下物理特征。 二维和三维地震有限差分正演模拟是该软件的核心功能之一。二维模拟适合初步了解地质构造的基本形态;而三维模拟则提供更为详细精确的地下图像信息。有限差分法是一种数值计算方法,用于求解偏微分方程如波动方程,在地震学中被用来模仿地震波在地层中的传播过程。通过这种方法可以预测不同结构下的反射与折射现象,并推断出地质构造的具体情况。 NVIDIA GPU(图形处理器)的应用显著提高了模拟的效率。GPU擅长并行计算,对于大规模数值运算任务如矩阵操作等具有明显优势。借助CUDA编程接口,开发人员能够充分利用GPU的性能潜力实现高效快速的正演模拟过程。 该软件版本为gpu_vti_23D-2.0,表明它是针对GPU优化设计的产品,并支持二维和三维VTI介质模型。用户可以期待获得更稳定且高效的计算结果。此外,可能还包括错误修复、性能提升及新功能等更新内容。 这款基于NVIDIA GPU加速的地震有限差分正演模拟软件结合了各向异性介质模型、高效计算平台以及先进数值方法为地球物理学家提供了强有力的工具帮助他们更好地理解地下结构进行资源勘探和地质灾害评估等工作。通过利用GPU的强大运算能力,不仅可以快速完成大规模地震模拟任务还能降低计算成本提高科研工作效率。
  • 基于CPML的二波动方程模拟及吸收边界处理
    优质
    本研究提出了一种基于CPML技术的二维波动方程有限差分正演方法,并探讨了其在地震数据建模中的应用,有效提升了边界吸收效果。 CPML吸收边界的二维波动方程有限差分正演模拟设计得很好。
  • Matlab FDTD时域综合-V1.fig
    优质
    本图集展示了利用Matlab软件实现的一维、二维及三维FDTD(时域有限差分法)仿真结果,适用于电磁场分析与光波传播研究。 我基于Matlab的FDTD(时域有限差分)方法制作了一个简单的GUI程序,用于展示一维、二维和三维空间中波的传播形式。该程序是在参考了其他人的代码后完成的,目前还有一些不完善的地方,可以在现有基础上继续改进和完善。
  • SemiAirMultiSourc.zip_SemiAirMultiSourc_仿真_瞬变电磁
    优质
    SemiAirMultiSourc是一个专注于瞬变电磁技术的三维正演仿真的软件包,适用于地质勘探等领域,提供高效的多源信号处理能力。 该程序实现瞬变电磁法三维正演,其中场源可以是多个。