Advertisement

高共模抑制比的双运放放大电路.DSN

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:DSN


简介:
本论文设计了一种高性能双运放放大电路,特别强调了其在提高共模抑制比方面的创新技术,适用于精密测量和生物医学传感器等领域。 调幅(AM)信号的包络线形状与调制信号一致。只要能检出调幅信号的包络线即能实现解调,这种方法又称包络检波。普通调幅(AM)信号通过精密全波整流电路进行全波整流,然后经过低通滤波器提取低频成分,并通过信号放大获得解调后的信号。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .DSN
    优质
    本论文设计了一种高性能双运放放大电路,特别强调了其在提高共模抑制比方面的创新技术,适用于精密测量和生物医学传感器等领域。 调幅(AM)信号的包络线形状与调制信号一致。只要能检出调幅信号的包络线即能实现解调,这种方法又称包络检波。普通调幅(AM)信号通过精密全波整流电路进行全波整流,然后经过低通滤波器提取低频成分,并通过信号放大获得解调后的信号。
  • 了解.pdf
    优质
    本PDF介绍运算放大器的关键性能指标之一——共模抑制比(CMRR),解析其定义、作用及其在电路设计中的重要性。 想了解运放的共模抑制比可以参考相关资料,在仿真软件中测试共模抑制比。
  • 具有有源感射频
    优质
    本研究设计了一种具备高电源抑制比的有源电感射频放大电路,有效提升了射频信号处理中的噪声抑制性能和信号完整性。 摘要:本段落提出了一种采用有源电感的电路实现方案,并将其应用于宽带无线收发机射频放大电路的设计之中。文中分析了有源电感阻抗与各元件参数之间的关系,设计出了中心频率调节电路以及具有鲁棒性的偏置电路,确保工艺偏差和电源电压波动对有源电感阻抗的影响极小。基于SMIC 0.18-um 工艺进行了该方案的电路设计及流片验证工作,测试结果表明:采用此方法构建的射频放大电路能够产生预期的射频信号;其中心频率调节范围为0.5~2 GHz,并且可以承受高达0.8V 的电源电压偏差。 在无线收发机中,射频放大电路对于增强射频信号以及驱动发射机功率放大器等方面具有不可替代的重要性。传统的实现方式通常采用无源电感元件。
  • 噪声策略
    优质
    本文章探讨了在运放电路设计中降低和控制噪声的有效策略,旨在为工程师提供实用的技术指导与优化方案。 噪声可以是随机信号或重复信号,并且可以在内部或外部产生,以电压或电流的形式存在,可能是窄带的也可能是宽带的,频率可高也可低。(在这里我们将噪声定义为任何出现在运放输出端上的无用信号) 噪声通常包括器件自身的固有噪声和来自外界的外部噪声。其中,固有的噪声主要包括热噪声、散弹噪声以及1/f(低频)噪声等;而外部噪音一般指的是电源中的纹波干扰或空间耦合干扰等问题。通过合理的电路设计可以避免或者减小这些外部因素的影响。对于发挥低噪运放的最佳性能而言,降低外界的噪音影响尤为重要。 常见的外部噪声源包括: - 电源纹波:在使用全波整流和线性稳压供电的情况下,100Hz 的纹波是主要的电源干扰来源。对运算放大器电路来说,通常需要将该频率下的噪声电平控制在10nV到100nV(RTI)之间,具体数值取决于实际应用需求。
  • 关于(CMRR)参数详解与分析7
    优质
    本文详细解析了共模抑制比(CMRR)在运算放大器中的重要性及其测量方法,并探讨其对电路性能的影响。 共模抑制比(CMRR)是衡量运算放大器(简称运放)性能的关键参数之一,它反映了运放处理差分输入信号与共模干扰的能力。理想情况下,运放具有无限大的差模增益和零的共模增益,但在实际应用中无法达到这一状态。因此,CMRR被定义为差模增益与共模增益的比例值,用于描述运放在抑制共模信号干扰方面的效能。 其具体计算公式如下: \[ \text{CMRR} = \frac{\text{A}_d}{\text{A}_c} \] 其中 \( A_d \) 表示差模增益,而 \( A_c \) 代表共模增益。由于实际中的 CMRR 值通常非常高,因此常常采用其对数形式来表示: \[ \text{CMR} = 20\log(\text{CMRR}) \] 在现实应用中,运放的差模放大倍数并非无限大且共模放大倍数也不为零。这主要是由于制造和设计上的物理限制导致的结果。影响 CMRR 的主要因素包括: 1. 输入级晶体管不匹配:生产过程中造成的微小差异使得输入级中的两只晶体管无法完全一致,这些细微的差别会导致共模信号转换成差模误差。 2. 拖尾电流源输出阻抗的影响:在某些设计中使用拖尾电流源提供稳定的电流。如果其输出阻抗不是无穷大,则会通过该路径引入额外的干扰。 3. 寄生电容效应:尤其是在高频应用环境中,寄生电容的变化会影响恒流源的工作稳定性,从而影响差分输入端共模信号抑制能力。 实际操作中,为了提高运放的 CMRR 性能,工程师通常采取措施确保晶体管匹配良好、降低拖尾电流源输出阻抗以及减小寄生电容。此外还可以通过电路设计优化来应对这些挑战,例如使用射极或源极电阻并利用恒流源维持稳定工作条件。 值得注意的是,在差分放大器和仪表放大器的应用中同样需要关注 CMRR 参数。它们通常采用级联结构以提高共模抑制能力,并且在实际应用时工程师会根据具体需求选择合适的元件,确保电路能在特定场合下表现良好性能,特别是在对噪声及误差容忍度有较高要求的情况下更为重要。 综上所述,在了解了运放的共模抑制比特性之后,设计人员可以更准确地挑选和配置相关组件来满足不同应用场景下的技术指标。
  • LM833音频前置
    优质
    LM833双运放音频前置放大电路是一种高效音频信号增强解决方案,适用于各种音响设备。该电路利用LM833芯片的优越特性,提供高品质的声音输出和出色的信噪比,广泛应用于音乐播放器、录音设备等场景中。 LM833双运算音频前置放大器电路是一种专为处理音频信号设计的电路方案,主要由低噪声双运算放大器芯片、电阻、电容、二极管及晶体管等元件构成。该电路旨在增强微弱音频信号,并准备它们进入后续功率放大的阶段。 LM833是一款专门用于音频应用的运算放大器,具有出色的低噪声特性,这对于保持音质纯净至关重要。此芯片包含两个独立的运算放大器,可以分别应用于左声道和右声道以实现立体声操作。在电路中,每个运算放大器通常需要正负电源供电来扩大动态范围并提升性能。 电阻如R1、R2、R3等与电容C1、C2等共同作用设定放大器的增益及滤波特性,并确保稳定性。例如,通过结合使用特定电阻和电容器(比如R4, R7 和 C5),可以形成低通滤波器以抑制高频噪声并保持良好的低频响应。 电路中的大容量电解电容C1、C2等用于电源端的旁路与过滤作用,减少对放大器的影响。涤纶电容如C3则负责高频耦合和去耦工作。齐纳二极管D1和D2作为电压基准及保护装置使用,防止过高的电源电压损坏运算放大器。 晶体管Q1 和 Q2(BC337 和 BC327 型)用作提供给运算放大器的±18V 电源缓冲器。这些选择基于它们的额定电压和电流能力以确保足够的驱动性能。 该电路通过RCA音频输入插座接收信号,实现立体声操作时需将所有组件(如 R1, C4 等)成对复制并连接至IC1相应引脚上。 根据技术数据,在 1kHz 下灵敏度为200mV RMS 输入对应2.5mV RMS 输出表明其具有较高的增益。最大输入电压在不同频率下有所变化,最高可达 127 mV RMS @ 20 kHz。从 100 Hz 到 20 kHz 的频率响应保持 ±0.5 dB 线性度良好地表示在整个音频频段内的声音均衡性能优异。 总谐波失真在不同测试点处非常低,例如,在1kHz时为 0.006%,而在10kHz时则为 0.02%。这表明电路具有出色的保真能力。 LM833双运算音频前置放大器电路是一个高效且低噪声的解决方案,适合对音质有较高要求的应用场景。通过合理选择和匹配组件可以进一步优化性能以确保音乐播放清晰度与细节。
  • 选择合适阻可提升差分哦~
    优质
    本文探讨了如何通过选择恰当的电阻值来优化差分放大器的性能,重点在于提高其共模抑制比(CMRR),从而增强信号处理能力。 在各种应用领域使用模拟技术时都需要差分放大器电路。例如,在测量技术的应用中,可能需要极高的精度。为了达到这一点,尽可能减少典型误差源(如失调、增益误差以及噪声、容差和漂移)至关重要。为此,需要采用高精度运算放大器,并且外部元件的选择同样重要,尤其是电阻的匹配比值。 理想情况下,在差分放大器电路中使用的电阻应仔细选择以确保其比值一致 (R2/R1 = R4/R3)。任何偏差都会导致不良的共模误差。差分放大器抑制这种共模误差的能力通过共模抑制比(CMRR) 来衡量,它表示输出电压相对于输入信号变化的比例。
  • 基于LM324
    优质
    本设计采用LM324运算放大器构建了高性能的放大和比较电路,适用于信号处理与检测系统中模拟信号的放大及比较应用。 LM324是一款经典的四运放集成电路,在电子设计中有广泛应用,如信号放大、比较器及滤波器等。本段落将探讨如何利用LM324的特性构建这两种功能电路,并通过Proteus仿真软件进行验证。 LM324具有低功耗和低成本的特点,包含四个独立工作的运算放大器单元,每个都可以单独使用或组合以满足不同的需求。其主要特点包括: 1. **宽电源电压范围**:LM324可以在较广泛的电源电压范围内工作,通常为4V到36V,适用于许多便携式设备和汽车电子应用。 2. **低输入偏置电流**:LM324的输入偏置电流非常小,在微安级别,使其在处理弱信号时表现出色。 3. **高输入阻抗**:运算放大器具有很高的输入端阻抗,允许与各种负载连接而不会引入显著误差。 4. **低功耗**:静态电流较低,适合电池供电的系统。 使用LM324可以构建非反相、反相和差分等基本类型的放大电路。在非反相配置中,信号通过同相输入端接入,并由反馈电阻决定输出增益;而在反向配置下,则从反相输入端接收信号并产生与之相反的放大结果。此外,LM324还能用于构建电压比较器,在特定阈值上切换输出状态。 Proteus是一款强大的电子电路仿真工具,允许设计者模拟实际硬件行为而无需物理搭建。它提供了创建和测试电路的功能,并能观察不同条件下的响应情况,有助于学习与验证设计理念。 在基于LM324运放的放大比较项目中,你可以首先构建基本放大器配置并调整反馈电阻值来改变增益;随后设计电压比较器并通过设置基准电压进行仿真。通过这种方式深入了解LM324的工作原理和应用方式。 由于其广泛的电源适应性、低功耗及性价比优势,LM324成为许多电子爱好者的首选元件之一。结合Proteus仿真软件的应用,不仅能够理论学习还能亲身体验电路设计过程中的各种挑战与乐趣,并为未来的项目打下坚实基础。
  • 关于测量(CMRR)理论分析与计算
    优质
    本文深入探讨了测量放大器共模抑制比(CMRR)的理论基础,并提供了详细的计算方法和应用实例,旨在提高电路设计中的信号处理精度。 理论推导表明,测量放大器的共模抑制比等于第一级放大器的增益与后一级放大器的共模抑制比之积。