Advertisement

关于Ku波段宽带微带天线的设计研究 (2012年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本论文专注于Ku波段宽带微带天线的设计与优化,探讨了其在卫星通信中的应用潜力,提出了一种新颖高效的天线结构设计。 本段落提出了一种新型Ku波段宽频带微带天线的设计方法。该设计通过在接地板上开设H型缝隙进行耦合馈电,并在辐射贴片表面添加矩形缝隙以扩展工作带宽,同时还在天线底部增设反射板来提高增益并优化方向图的前后比性能。利用高频仿真软件HFSS对该设计方案进行了模拟和优化,结果显示该结构天线具有良好的宽带谐振特性:回波损耗低于-10 dB,阻抗相对带宽达到39.8%,交叉极化电平小于-28 dB,并且前后比超过19 dB。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Ku线 (2012)
    优质
    本论文专注于Ku波段宽带微带天线的设计与优化,探讨了其在卫星通信中的应用潜力,提出了一种新颖高效的天线结构设计。 本段落提出了一种新型Ku波段宽频带微带天线的设计方法。该设计通过在接地板上开设H型缝隙进行耦合馈电,并在辐射贴片表面添加矩形缝隙以扩展工作带宽,同时还在天线底部增设反射板来提高增益并优化方向图的前后比性能。利用高频仿真软件HFSS对该设计方案进行了模拟和优化,结果显示该结构天线具有良好的宽带谐振特性:回波损耗低于-10 dB,阻抗相对带宽达到39.8%,交叉极化电平小于-28 dB,并且前后比超过19 dB。
  • 圆极化线.pdf
    优质
    本论文探讨了C波段宽带圆极化微带天线的设计方法与技术细节,旨在提升其性能和应用范围。通过优化结构参数,实现了高增益、低轴比的特性。 圆极化天线因其能够接收任意极化的电磁波而被广泛使用。为了满足通信需求,宽带圆极化天线应运而生。通过对矩形贴片天线进行结构调整,设计出一种新型的宽带圆极化天线,并利用电磁仿真软件CST对该天线进行了全波时域仿真分析。仿真结果显示,该天线的工作频段为3.8~8.1GHz,在通带内轴比参数AR<3的带宽为4~8GHz,显著拓宽了工作范围。
  • 2012Ku通滤器新
    优质
    本文介绍了在2012年提出的一种创新性的Ku波段微带带通滤波器设计方案,旨在提高通信系统的性能和效率。 本段落介绍了一种新型微带带通滤波器的设计方法,该设计采用了改进型发夹谐振器,并通过在耦合线内弯的结构来减小电路尺寸而不影响性能。此外,由于采用慢波周期结构导致的带阻效应,这种滤波器对谐波具有良好的抑制效果。利用HFSS软件对该滤波器进行设计和优化,并通过实物测量验证了其优越性。
  • Ku优化
    优质
    本研究专注于Ku波段微波宽带滤波器的设计与优化,通过采用先进的电磁仿真技术,探索新型结构和材料的应用,以实现更优的频率响应、更低的插损以及更高的带外抑制性能。 Ku波段微波宽带滤波器的优化设计对卫星产品的设计具有重要的意义。
  • Ku线設計
    优质
    本研究探讨了Ku波段微带天线阵的设计与优化,旨在提升雷达和卫星通信系统的性能。通过仿真分析,实现了高增益、宽频带及低剖面一体化设计。 ### Ku波段微带天线阵的设计 #### 概述 随着卫星通信技术的发展以及频谱资源的日益紧张,高效能、多用途的天线设计成为研究的重点之一。特别是对于Ku波段微带天线阵的设计尤为重要。本段落介绍了一种适用于Ku波段的宽频带高隔离度双极化16元微带贴片天线阵的设计方法,并通过详细的理论分析、数值仿真以及实验验证,证明了所设计天线的良好性能。 #### 天线结构与设计原理 ##### 天线结构 本设计采用了一个4×4的微带贴片天线阵列。每个单元由两层介质板组成:上层介质板蚀刻有辐射贴片,下层介质板两侧设有反射板和馈线。在反射板上有两个相互垂直的H形槽作为馈电结构以实现双极化功能。上下两层之间的空气间隙可以提高隔离度并优化阻抗匹配。选用相对介电常数为2.2的聚四氟乙烯材料,上层介质板厚度1mm,下层0.25mm。 ##### 馈电网络 天线阵列采用等幅同相的并联馈电方式以确保整个阵列的工作一致性。横向间距设置为约0.72λ(18毫米),纵向间距约为0.56λ(14毫米)。这样的设计简化了馈电网络布局,提高了整体性能。 #### 数值仿真与实验验证 为了评估天线的性能,使用商业软件IE3D进行了数值仿真实验。结果显示,在端口1和2上,驻波比小于2的带宽分别为20.17%和25.74%,隔离度在整个工作频段内超过32dB,展现出优秀的宽带特性和高隔离度。 基于仿真结果制作了实验模型,并使用Wiltron-37269A网络分析仪进行S参数测试。实测数据表明端口1的驻波比小于2的频率范围与仿真实验一致,验证了理论设计和实际制造的良好一致性。 #### 结论 本段落成功地设计并实现了工作在Ku波段的16元微带贴片天线阵列。该天线不仅具有宽频带特性(端口1和端口2的阻抗带宽分别为20.17%和25.74%),还表现出高隔离度(超过32dB)及实测增益达17.9dBi的良好性能指标,适合应用于现代卫星通信系统中,特别是在需要高速数据传输与双极化功能的场合。此外,该设计具有良好的制造可行性和成本效益,在工程应用方面展现出较高的价值。
  • Ku阵列线及阵列综合
    优质
    本研究聚焦于Ku波段微带阵列天线的设计与优化,探讨了其在卫星通信中的应用前景,并提出了一种高效的阵列综合方法。 本段落首先探讨了一种适用于Ku波段卫星通信的宽频带双极化微带天线阵的设计方法。该设计采用两个相互垂直的“H”形槽耦合馈电结构,两种正交的线性极化状态分别由两个H形口径产生。结果显示这种结构具备宽带特性、高隔离度以及优良的交叉极化性能。 接下来,基于上述双极化单元的设计原理,本段落设计了并联和串联馈电方式下的八元均匀直线阵,并进一步研究了两种馈电方式下低副瓣一维阵列的设计方法。文中详细介绍了不等分馈电网络的具体设计方案以及仿真实验结果表明天线性能符合预期要求。 此外,在基于传统阵列理论的基础上,本段落还深入分析了一种以八单元为子阵的平面阵结构,并对其进行了详细的探讨与研究。 文章另一部分的重点在于利用遗传算法进行阵列天线综合的研究。由于遗传算法的独特优势非常适合解决复杂的非线性优化问题如天线综合作业等,因此本段落在总结了传统方法和遗传算法原理的基础上,主要讨论了实数编码的遗传算法在低副瓣、方向图赋形以及方向图置零三类阵列综合中的应用,并通过多个仿真实例验证其效果。实验结果表明基于遗传算法的设计方案能够有效满足优化需求并达到良好的性能指标。
  • 共面导馈电线2012
    优质
    本研究于2012年提出了一种采用共面波导馈电技术的新型超宽带天线设计方案,旨在实现更宽的工作频带与更好的辐射性能。 本段落设计了一种采用共面波导馈电的小型平面超宽带天线。该天线由树形辐射单元与共面波导组成,在保持体积小巧的同时具备工作带宽内的稳定方向特性。通过电磁仿真软件对影响性能的关键参数进行了详细地仿真、分析和优化,确定了理想的尺寸配置。经过制作并测试优化后的超宽带天线后发现其工作频段为3~11GHz,并且实测结果与仿真预测高度一致,证实了利用共面波导馈电方法设计的超宽带天线的有效性。
  • 平面螺旋线
    优质
    本研究专注于宽带平面螺旋天线设计,探索其在不同频率范围内的性能优化及应用潜力,致力于提高通信系统的效率和可靠性。 宽带平面螺旋天线的研究与设计 宽带平面螺旋天线因其具备的宽频带特性和圆极化特性,在射频(RF)及微波领域中被广泛应用。本段落主要探讨了一种宽带平面螺旋天线的设计方法,通过优化辐射元、背腔结构以及输入阻抗匹配等方面来提高其性能,并分析了测试结果。 1. 天线辐射单元设计 在设计过程中,需对天线的辐射元件进行精心选择和配置以确保宽频带特性。具体而言,阿基米德螺旋天线由圆形板与螺旋形结构组成。为了满足宽带需求,本段落选择了εr=4.6且厚度为1 mm的板材作为基础材料,并使输入阻抗约为Z0=112.6Ω;此外,还需确保外圈周长大于λmax的1.25倍以及馈电点间距小于λmin/4。 2. 背腔设计 为了实现单向辐射效果,在背腔内通常会放置吸波材料。然而考虑到增益因素的影响,本段落并未填充此类物质而是采用了长度为λ/4的金属套筒作为反射体;该结构如图所示:在同轴电缆外部加上一个同样长度(即λ/4)但不与之接触且仅在其底端短接于外皮上的金属管,并以此构成一个新的特性阻抗Zc的新同轴线L,而终端则处于短路状态。 3. 输入阻抗匹配设计 基于阿基米德螺旋天线的辐射原理,在实现等幅反相馈电(即平衡模式)时通常需要使用巴伦转换器将不平衡型同轴电缆转变为微带线路形式。尽管锥形巴伦能够提供较宽的工作频段,但其加工难度较大且容易导致射频泄露问题;因此本段落采用了空心的同轴变换结构来替代传统的巴伦设计,虽然这会导致馈电不均衡的问题出现,但是方便了实际制造过程中的操作。 4. 测试结果 为了验证圆极化性能,在测试中需要对天线进行不同角度(例如:45°)旋转以获取完整的数据集;当螺旋型发射器处于水平状态而接收端垂直放置时所测得的方向图如图所示。此外,还测量了在相同条件下该装置的增益曲线,并绘制出了轴比特性图表。 综上所述,本段落提出了一种新型宽带平面螺旋天线设计方案并通过仿真与实验验证了其优良的工作性能;这表明它适用于RF和微波技术领域内的多种应用场景中。
  • 77GHz阵列线_雷.caj
    优质
    本文探讨了77GHz微带阵列天线的设计与优化方法,分析了其在毫米波雷达系统中的应用前景。作者通过仿真和实验验证了设计方案的有效性。 77GHz毫米波汽车雷达设计涵盖了天线阵列与信号处理的软件硬件方面。目前广泛使用的微带阵列形式被用于天线设计部分。