Advertisement

9V至3.3V,12V至3.3V恒压稳压芯片选择方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本方案详细介绍了从9V到3.3V和12V到3.3V的恒压稳压芯片的选择标准与应用技巧,旨在帮助工程师优化电源管理设计。 在电子设计中,特别是嵌入式系统里为MCU供电的场景下,从9V或12V转换到3.3V且要求输出电压稳定、低纹波以及大电流(如1A, 2A, 3A)的应用时,选择合适的电源转换芯片尤为重要。线性稳压器(LDO)虽然在小电流应用中能够提供稳定的电压,并具有简单的电路设计和较低的成本优势,但其效率通常只能达到60%左右,在大电流需求下会产生大量热量并降低整体系统的能效。 相比之下,DC-DC降压变换器(Buck Converter)通过开关模式工作,利用电感与MOSFET交替导通来实现高效的电压转换。这种设计能够显著提高电源的效率至90%,非常适合需要稳定输出且电流较大的应用场合,并减少了由于能量损失导致的发热问题。 例如,在从9V或12V降至3.3V的应用中,可以考虑使用PW2162这款高效同步降压变换器,它支持4.5V到16V宽范围输入电压和高达2A的最大负载电流。此外,该芯片还具备可调输出电压功能,并能在高频(最高可达600kHz)下工作以允许采用小型贴片电感元件,从而在减小电路板面积的同时保持高效性能。 对于更大电流的应用需求,则可以考虑PW2163型号的DC-DC降压变换器,它同样具有SOT23-6封装形式和与PW2162相同的引脚配置,并能够提供高达3A的最大输出电流。另外,针对更广泛的输入电压范围(4V至30V),并要求最大输出电流为1.2A的情况,则可选择PW2312这一型号。 尽管LDO在低功率需求时表现出色,但在大负载条件下效率低下且存在散热问题,因此不推荐用于超过100mA的应用场景。然而,在小电流或电压转换范围较小的情况下(如从12V降至3.3V),一些常见的LDO产品例如PW6566、PW6218和PW6206等可以提供一个简洁且经济的解决方案。 综上所述,当需要实现9V至3.3V或12V至3.3V的大电流转换时,DC-DC降压变换器如PW2162、PW2163或者PW2312是更为理想的选择。这些芯片不仅能够提供高效的电源管理解决方案,在稳定性和散热性能方面也优于LDO。然而在低功率需求场合下,则可以考虑使用像PW6566或PW8600这样的线性稳压器来满足特定的应用要求和成本预算限制。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 9V3.3V12V3.3V
    优质
    本方案详细介绍了从9V到3.3V和12V到3.3V的恒压稳压芯片的选择标准与应用技巧,旨在帮助工程师优化电源管理设计。 在电子设计中,特别是嵌入式系统里为MCU供电的场景下,从9V或12V转换到3.3V且要求输出电压稳定、低纹波以及大电流(如1A, 2A, 3A)的应用时,选择合适的电源转换芯片尤为重要。线性稳压器(LDO)虽然在小电流应用中能够提供稳定的电压,并具有简单的电路设计和较低的成本优势,但其效率通常只能达到60%左右,在大电流需求下会产生大量热量并降低整体系统的能效。 相比之下,DC-DC降压变换器(Buck Converter)通过开关模式工作,利用电感与MOSFET交替导通来实现高效的电压转换。这种设计能够显著提高电源的效率至90%,非常适合需要稳定输出且电流较大的应用场合,并减少了由于能量损失导致的发热问题。 例如,在从9V或12V降至3.3V的应用中,可以考虑使用PW2162这款高效同步降压变换器,它支持4.5V到16V宽范围输入电压和高达2A的最大负载电流。此外,该芯片还具备可调输出电压功能,并能在高频(最高可达600kHz)下工作以允许采用小型贴片电感元件,从而在减小电路板面积的同时保持高效性能。 对于更大电流的应用需求,则可以考虑PW2163型号的DC-DC降压变换器,它同样具有SOT23-6封装形式和与PW2162相同的引脚配置,并能够提供高达3A的最大输出电流。另外,针对更广泛的输入电压范围(4V至30V),并要求最大输出电流为1.2A的情况,则可选择PW2312这一型号。 尽管LDO在低功率需求时表现出色,但在大负载条件下效率低下且存在散热问题,因此不推荐用于超过100mA的应用场景。然而,在小电流或电压转换范围较小的情况下(如从12V降至3.3V),一些常见的LDO产品例如PW6566、PW6218和PW6206等可以提供一个简洁且经济的解决方案。 综上所述,当需要实现9V至3.3V或12V至3.3V的大电流转换时,DC-DC降压变换器如PW2162、PW2163或者PW2312是更为理想的选择。这些芯片不仅能够提供高效的电源管理解决方案,在稳定性和散热性能方面也优于LDO。然而在低功率需求场合下,则可以考虑使用像PW6566或PW8600这样的线性稳压器来满足特定的应用要求和成本预算限制。
  • 3.7V3.3V及5V3.3V的升IC和LDO
    优质
    本产品是一款高效的电压转换芯片,适用于从3.7V或5V降至稳定的3.3V输出,集升压与线性稳压功能于一体,广泛应用于各类电子设备中。 在电子设计领域,电源管理至关重要,特别是在需要不同电压等级的设备上。本段落将详细探讨如何从3.7V或5V输入电压转换到3.3V输出电压,并介绍涉及升降压IC和LDO稳压芯片的相关知识。 对于3.7V转3.3V以及5V转3.3V的电源管理,主要有三种方法:使用升降压芯片、单降压芯片及LDO稳压器。选择哪一种取决于应用场景的具体需求,如输入电压范围、输出电流大小、效率和功耗等。 1. **升降压IC**:这种类型的集成电路可以处理广泛的输入电压变化,并且能够从较高或较低的输入电压转换到3.3V输出。例如,PW5410B适用于小电流应用,在1.8V至5V范围内工作;而PW2228A和PW2224则能提供更大的电流支持(最高可达3A),并且允许调整输出电压。 2. **单降压IC**:当输入电压高于目标输出电压时,比如从5V降到3.3V,则使用降压芯片更为合适。例如,PW2057、WP2052和PW2051等都是常见的选择,它们有不同的电流规格和封装形式;PW2058则提供可调的输出电压及更高的电流能力。 3. **LDO稳压器**:当需要较低噪声或输入电压接近目标输出时,线性稳压器(LDO)是理想的选择。例如PW6566、PW6218和PW6206等芯片可以提供多种固定或可调的电压选项,并且具有低静态功耗特性。 在选择这些电源管理IC时,请考虑以下因素: - **输入电压范围**:确保所选芯片能够适应实际应用中的所有可能电压变化。 - **输出电流需求**:根据负载来挑选合适的电流规格。 - **效率要求**:高效转换器可以减少能量损失,尤其适用于大功率应用场景。 - **封装尺寸和布局限制**:选择符合电路板空间的合适封装形式。 - **工作温度稳定性**:确保芯片能在预期的操作环境中正常运行。 - **热管理需求**:对于高功耗应用可能需要额外考虑散热设计。 具体而言,在3.7V锂电池供电系统中,由于电池电压范围为3V至4.2V,使用升降压IC可以保证在不同充电状态下提供稳定的3.3V输出。而对于5V输入电源,如果其稳定度足够,则直接采用降压芯片即可;若需要应对更广泛的输入电压变化,则应选择PW2162和PW2163等支持更大范围的降压芯片。 总而言之,在进行从3.7V或5V到3.3V转换的设计时,需综合考虑系统需求、性能指标及成本因素。正确应用这些电源管理IC不仅能确保设备正常运行,还能优化系统的能效与稳定性。
  • 36V3V转换,包含DC-DC降及LDO线性功能(24V、20V、15V、12V9V、5V、3.3V
    优质
    本款36V至3V转换芯片集成了高效的DC-DC降压模块与多电压等级的LDO线性稳压器,支持从24V到3.3V的宽范围输出。 本段落介绍了一系列DC-DC降压稳压器及LDO线性稳压芯片,能够将输入电压从36V转换为15V、12V、9V、8V、6V、5V、3.3V、3V和1.8V等多种输出电压。此外,还介绍了用于实现36V转至15V、12V、9V、8V、6V、5V、3.3V及3V的降压芯片。这些产品可广泛应用于各类电子设备中,确保稳定的电压输出。
  • 12V转5V和12V3.3V的降与电路图
    优质
    本文章详细介绍如何从众多选项中挑选合适的12V转5V及12V转3.3V降压芯片,并提供实用电路设计参考。 2.1 多源异构知识融合面临的挑战 数据融合是从不同来源的数据、信息进行联合、相关及组织处理以寻找其真实值的过程。相比之下,知识融合面临三大主要挑战。 首先,在输入形式上,数据融合的输入是一个二维矩阵(如图1(a)),而知识融合则需要一个三维矩阵作为输入(如图1(b))。这一额外维度代表了提取器的数量,意味着每个单元格不仅表示从特定Web源中抽取的数据项值,还包含了用于该操作的具体提取器信息。因此,在整个过程中都可能出现错误,这些错误可能源自于原始的Web源、三元组识别过程中的问题、实体连接以及属性连接等环节。 其次,知识融合希望预测概率能准确反映每个三元组的真实可能性,并且这种准确性需要满足单调性要求:即具有较高预测概率的三元组其真实出现的概率也应当高于那些预测概率较低的三元组。 最后,由于规模巨大的问题,在当前的数据融合实验中使用的最大数据集包含170K个数据源和400K条数据项。相比之下,知识融合通常需要处理数量级更大的数据量,这给实际操作带来了极大的挑战。 2.2 融合方法选择的标准 现有的用于解决基本数据融合问题的方法同样可以被应用到知识融合的场景中去。
  • 12V转5V及12V3.3V电路图.pdf
    优质
    本PDF文档提供了详细的电路设计和参数配置,帮助用户实现从12V电压转换为5V及3.3V稳定的输出电压,适用于电子设备电源供应方案。 提供12V转5V降压芯片、12V转3.3V稳压芯片以及多种LDO和DC-DC降压解决方案,共计二十多款产品选择。
  • 24V转12V9V、8V、6V、5V、3.3V、3V,DC-DC降及LDO解决
    优质
    本产品提供高效可靠的24V转低电压(如12V, 9V等)转换方案,涵盖DC-DC降压与低压差线性稳压器(LDO)技术,适用于多种电子设备。 在电子设备设计中,电源管理是一项至关重要的任务。不同设备之间的电压转换尤为常见,尤其是将较高电压如24伏特(V)降低到所需的各种较低电压水平,例如15V、12V、9V、8V、6V、5V以及更小的3.3V和3V等。 DC-DC降压转换器是实现这一目标的主要技术之一。这类芯片能够将较高的输入电压降至所需的输出电压,并且可以提供较大的电流,适用于需要大功率的应用场景。例如,PW2058、PW2051、PW2052 和 PW2053 是适合处理 24V 输入的 DC-DC 芯片,它们能够生成不同级别的输出电压和电流,频率范围在 1.0MHz 到 1.5MHz。此外,PW2162、PW2183、PW2312 和 PW2330 是更大功率的选择,支持更宽的输入电压范围,并且封装形式多为 SOT23-6 或 SOP8。 另一种常见的电压转换方法是使用线性稳压器(LDO)。这种技术特别适用于对输出纹波和噪声有严格要求的小功率应用。例如,在需要从 24V 输入生成 3V、3.3V 和 5V 输出时,PW6566、PW6218、PW6206 和 PW8600 等 LDO 芯片是很好的选择。这些芯片支持最高可达 40V 的输入电压,并且功耗低至约 4uA,封装形式为 SOT23-3 或 SOT23-89。 在实际应用中,设计者需要根据设备的具体需求来挑选合适的电源管理方案。这包括考虑输出的电压和电流要求、效率水平以及对热管理的需求等多方面因素。同时,在处理输入电压尖峰时,通常会采用电解电容来吸收这些尖峰,从而保证芯片的安全稳定工作。 总结来说,24V到多种较低电压(如5V、3.3V 或 3V)的转换需要一系列电源管理芯片的支持,包括 DC-DC 转换器和 LDO。正确选择并应用这些技术对于确保电子设备的有效运行以及能源利用效率至关重要。
  • 3.3V低功耗
    优质
    简介:该产品为一款高效能、低能耗的3.3V稳压集成电路,专为便携式电子设备和电池供电系统设计,确保稳定输出电压的同时显著降低能源消耗。 XC6206P332MR是低功耗3.3V稳压芯片的优选选择,这个系列还有许多其他型号可供选择,大家可以参考一下。
  • 3.7V转3.3V,5V转3.3V升降IC.pdf
    优质
    本PDF文档详细介绍了3.7V至3.3V降压转换及5V至3.3V升压/降压集成电路的应用与设计原理,适用于电子设备电源管理。 3.7V 降压至 3.3V 的电路、5V 降压至 3.3V 的 IC、支持 3A 输出的降压芯片、适用于各种应用的高效率稳压芯片以及低功耗 LDO 芯片。此外,还有固定输出为 3.3V 的稳压器和升降压转换功能的电路可供选择。这些器件的选择依据包括具体的应用需求和技术规格说明。
  • LM1117-3.3V的引脚功能
    优质
    本简介详细介绍了LM1117-3.3V稳压芯片各引脚的功能与作用,帮助读者快速掌握其使用方法和注意事项。 本段落通过电路图的形式直观地介绍了LM1117-3.3V稳压芯片各引脚的功能及其连接使用方式。
  • 12V转5V及12V3.3V规格书与型表.pdf
    优质
    本资料详述了多种用于将12V电压降至5V和3.3V的降压转换器芯片,包括其技术参数、性能指标,并提供全面的选型指南。 PW2162 是一款完全集成的高效率 2A 同步整流降压转换器,在宽输出电流负载范围内保持高效运行。该设备提供 PWM 控制和 PFM 模式开关控制两种工作模式,从而在更广泛的负载范围内实现更高的效率。PW2162 需要最少数量的标准外部组件,并以符合 ROHS 标准的 6 引脚 SOT23 封装形式提供。