Advertisement

线程及线程间管道通信实验(操作系统实验报告二)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:DOC


简介:
本实验旨在通过创建和管理多线程,并使用管道实现线程间的通信,加深对操作系统的理解。学生将编写代码演示线程同步与数据交换机制。 【线程与进程管道通信实验】是操作系统课程中的一个重要实践环节,旨在帮助学生深入理解线程控制及管道通信的基本概念。在这个实验中,学生们会在Linux环境下使用C语言编写程序,在创建并发的线程或进程中利用无名管道进行数据交换以实现线程间的通信。 该实验的核心在于理解和运用二元函数`f(x,y)`计算方法,此函数由两部分构成:递归定义的`f(x)`和同样递归定义的`f(y)`。学生需要设计并实现一个程序,能够同时处理这两个子问题,并最终得出结果`f(x,y)`。为此,在编写过程中会创建三个并发进程分别用于计算上述三者。 具体步骤如下: 1. 初始化设置及获取用户输入的数据。 2. 使用系统调用`pipe()`来建立两个无名管道以确保数据传输的正确性。 3. 利用`fork()`函数生成第一个子进程,负责执行`f(y)`并把结果通过首个管道发送出去。 4. 父级程序接着创建第二个子进程去计算`f(x)`, 并将输出写入到另一个管道中。 5. 最后父进程等待两个子任务完成后从各自对应的管道读取数据,并根据这些信息来求解最终的`f(x,y)`,随后结束整个过程。 实验过程中学生会了解到无名管道是一种单向通信机制,仅允许在一个方向上传输数据。这种技术是实现多线程间简单且直接的数据交换的理想选择。通过实际操作和编程实践,学生们能够更好地掌握并发控制及同步处理方面的知识。 在编写代码时可能会遇到诸如变量命名错误等细节问题,这需要学生仔细检查并修正。此外实验还强调了理论学习与动手实操相结合的重要性,在课堂上所学的知识点将在此过程中得到进一步的巩固和深化理解。 最终结果会展示每个子进程的身份信息、计算得出的结果值以及最后求得的整体函数`f(x,y)`的具体数值,以此来验证程序逻辑是否正确无误。通过这项实验练习,学生不仅能更深入地了解操作系统中有关并发任务管理和跨线程间数据共享与传递的知识点,还能提升编程技巧和问题解决能力。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线线
    优质
    本实验旨在通过创建和管理多线程,并使用管道实现线程间的通信,加深对操作系统的理解。学生将编写代码演示线程同步与数据交换机制。 【线程与进程管道通信实验】是操作系统课程中的一个重要实践环节,旨在帮助学生深入理解线程控制及管道通信的基本概念。在这个实验中,学生们会在Linux环境下使用C语言编写程序,在创建并发的线程或进程中利用无名管道进行数据交换以实现线程间的通信。 该实验的核心在于理解和运用二元函数`f(x,y)`计算方法,此函数由两部分构成:递归定义的`f(x)`和同样递归定义的`f(y)`。学生需要设计并实现一个程序,能够同时处理这两个子问题,并最终得出结果`f(x,y)`。为此,在编写过程中会创建三个并发进程分别用于计算上述三者。 具体步骤如下: 1. 初始化设置及获取用户输入的数据。 2. 使用系统调用`pipe()`来建立两个无名管道以确保数据传输的正确性。 3. 利用`fork()`函数生成第一个子进程,负责执行`f(y)`并把结果通过首个管道发送出去。 4. 父级程序接着创建第二个子进程去计算`f(x)`, 并将输出写入到另一个管道中。 5. 最后父进程等待两个子任务完成后从各自对应的管道读取数据,并根据这些信息来求解最终的`f(x,y)`,随后结束整个过程。 实验过程中学生会了解到无名管道是一种单向通信机制,仅允许在一个方向上传输数据。这种技术是实现多线程间简单且直接的数据交换的理想选择。通过实际操作和编程实践,学生们能够更好地掌握并发控制及同步处理方面的知识。 在编写代码时可能会遇到诸如变量命名错误等细节问题,这需要学生仔细检查并修正。此外实验还强调了理论学习与动手实操相结合的重要性,在课堂上所学的知识点将在此过程中得到进一步的巩固和深化理解。 最终结果会展示每个子进程的身份信息、计算得出的结果值以及最后求得的整体函数`f(x,y)`的具体数值,以此来验证程序逻辑是否正确无误。通过这项实验练习,学生不仅能更深入地了解操作系统中有关并发任务管理和跨线程间数据共享与传递的知识点,还能提升编程技巧和问题解决能力。
  • 上机——进
    优质
    本实验报告探讨了在操作系统课程中通过管道实现进程间通信的方法和技术,分析了数据交换过程中的同步机制和相关问题。 ### 实验目的 1. 深化对进程概念的理解,并明确进程与程序的区别。 2. 进一步了解并发执行的本质。 3. 分析进程中资源争用的现象,学习解决进程互斥的方法。 4. 学习如何处理进程同步的问题。 5. 了解Linux系统中实现进程间通信的基本原理。 ### 内容及要求 这是一个设计型实验,需要自行编写程序。具体任务为:使用`pipe()`系统调用来建立一条管道;两个子进程分别向管道写入一句话:“Child process1 is sending a message!”和“Child process2 is sending a message!”;父进程从该管道读取并显示来自两个子进程的信息。 要求如下: 1. 父进程先接收第一个子进程发送的消息,然后才接受第二个子进程发来的消息。 2. 实现对管道的互斥访问:当一个子进程正在向管道写入数据时,另一个必须等待。使用`lockf(fd[1], 1, 0)`来加锁,并用`lockf(fd[1], 0, 0)`解锁。 3. 父子进程同步:在子进程将信息写入管道后进入睡眠状态;当父进程尝试从空的管道读取数据时,同样需要等待直到有新的数据到来。 ### 相关系统调用 - `fork()`用于创建一个新进程。返回值为0表示当前是子进程,非零则代表父进程中的新子进程ID。 - `wait()`允许父进程暂停执行直至其某个或某些子进程结束。 - `exit()`用于终止程序运行,并传递退出状态给操作系统。 - `pipe()`用来建立一个管道以实现父子进程间的通信。返回值为0表示成功,否则是失败标志。 - `sleep(int t)`使调用者睡眠指定的秒数。 - `lockf(fd[1], 1, 0)`和`lockf(fd[1], 0, 0)`分别用于锁定及解锁管道写端口。 - 数据传输函数:通过`write(fd[1], String, Length)`向管道写数据,以及从管道读取信息到字符串中采用`read(fd[0], String, Length)`。 ### 程序流程 #### 父进程 1. 创建一个管道; 2. 分别创建两个子进程(编号为1和2); 3. 首先等待并接收第一个子进程发送的信息,并显示在屏幕上; 4. 接着,从第二个子进程中读取信息并在屏幕展示; 5. 最后程序结束。 #### 子进程 1. 对管道写入端口加锁以防止数据冲突。 2. 准备好要传递的消息(Child process n is sending message!)并将其存储到变量`OutPipe`中,其中n表示子进程编号。 3. 将消息通过管道发送出去; 4. 进行一段时间的睡眠等待; 5. 解锁写入端口,并结束程序。
  • 线
    优质
    本实验报告针对操作系统课程中关于线程管理的内容进行了详细的探讨和研究,通过编写与调试多线程程序,深入理解了线程创建、同步及通信等机制,并分析了其实现原理及其在实际应用中的重要性。 一个简单的操作系统实验报告,内容非常基础。报告详细记录了实验过程、结果以及分析,旨在帮助读者理解和掌握操作系统的相关知识与技能。尽管整体较为简单,但对于初学者来说具有很好的指导意义。
  • Linux(进
    优质
    本实验报告探讨了在Linux操作系统中实现进程间通信的技术与方法,包括管道、信号量及消息队列的应用,并分析其效率和安全性。 本段落探讨了基于Linux消息队列的进程间通信方法及其应用。作为一种高级的通信方式,消息队列能够被多个进程共享,并且可以利用多条消息队列来存储不同信息。在这些共用的消息队列中,每一项消息都附带一个标志位,以便标识该消息应由哪个特定进程处理。此外,本段落还通过构建简单的客户端和服务器端程序实例,说明了如何运用消息队列实现跨进程通信的技术细节。
  • 中进(含源码)
    优质
    本实验报告详细探讨了操作系统中进程间通信机制,并包含相关实现代码。通过具体案例分析及实践操作,深入理解管道、信号量和消息队列等技术原理及其应用。 该实验报告详细描述了进程间通信的实现原理,通过使用管道以及信号来完成进程间的通信,并附有源代码实现。
  • 中进
    优质
    本实验旨在通过构建和操作进程间的管道机制,探究Unix/Linux环境下进程间通信原理与实现方法,增强对操作系统内核功能的理解。 1. 学习UNIX命令及其使用格式,并熟悉UNIX/Linux的基本常用命令。通过练习掌握利用vi编辑器在UNIX环境下编译C程序的方法,并学会运用gcc、gdb工具进行C程序的编译与调试。 2. 编写一个能够实现进程间管道通信功能的程序。具体来说,该程序将创建一条管道并使用系统调用pipe()建立连接;然后两个子进程P1和P2分别向这条管道发送一句话:“Child 1 is sending a message!” 和 “Child 2 is sending a message!”;最后父进程从管道中读取这两个信息,并按照先接收来自P1的信息,后接收来自P2的信息的顺序进行输出。我已经对该程序进行了修改并成功运行,请参考此方法以获得帮助。
  • 控制
    优质
    本实验报告详述了操作系统课程中进行的进程控制实验第二部分的内容。通过编写和测试相关程序,深入理解操作系统的进程管理和同步机制。报告涵盖了实验目的、步骤及结果分析,并探讨了所遇问题及其解决方案。 os实验二 进程控制实验报告。包括代码和实验截图。
  • 优质
    本报告为《进程管道通信实验四》撰写,详述了基于Unix系统下的进程间通过管道进行数据传输的实现过程与分析。报告内容涵盖了实验目的、原理介绍、实施步骤及结果讨论等部分,旨在加深对进程同步和通信机制的理解。 编写一个程序来实现进程之间的管道通信。通过使用系统调用pipe()创建一条管道,并生成两个子进程P1和P2。让这两个子进程分别向管道中发送一句话:“child process P1 is sending messages!” 和 “child process P2 is sending messages!”。父进程中,从该管道读取由两个子进程写入的信息并将其显示在屏幕上。
  • 线同步在中的
    优质
    本实验报告聚焦于探讨和实践线程同步机制在操作系统中的应用。通过理论分析与编程实现相结合的方式,深入研究了信号量、互斥锁等关键技术,并进行了详细的测试和评估,为理解和掌握并发控制提供了宝贵的经验。 本段落件是操作系统中的线程同步实验的实验报告,包含了详细的代码和解释。
  • (第次):进线的创建.doc
    优质
    本实验报告详细记录了在操作系统课程中进行的第二次实验内容,主要探讨并实践了进程和线程的创建过程及其相关特性。通过理论结合实际操作的方式加深对多任务处理机制的理解。 实验二:进程与线程的创建 1. 在Linux环境下编写一个应用程序,命名为an_ch2_1b。此程序将持续输出以下行:“Those output come from child,[系统时间]”。另外写另一个应用程序,命名为an_ch2_1a。该程序需要创建子进程来执行an_ch2_1b。这个程序会不断显示如下信息:“Those output come from child,[系统时间]”。运行这些程序后,请观察并解释所看到的现象。 2. 在Linux环境下编写一个控制台应用程序,在此程序中有一个共享的整型变量shared_var,其初始值为0;随后创建一个新的线程与主线程并发执行。新生成的线程和主线程都将不断地循环,并在每次循环时输出shared_var 的当前值。其中,主线程会在每个循环里对shared_var进行加1操作;而新的线程则会持续地将shared_var减1。观察程序运行的结果并解释你的发现。 3. 提交源代码以及实验报告。