Advertisement

宽带双层微带天线设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目专注于宽带双层微带天线的设计与优化,通过创新结构实现更宽的工作频段和高效性能,在无线通信领域具有重要应用价值。 微带天线是在带有导体接地板的介质基片上附加导体贴片构成的。通过使用微带线或同轴探针给贴片馈电,在贴片与接地板之间激发电磁场,并且通过贴片上的缝隙向外辐射信号。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    本项目专注于宽带双层微带天线的设计与优化,通过创新结构实现更宽的工作频段和高效性能,在无线通信领域具有重要应用价值。 微带天线是在带有导体接地板的介质基片上附加导体贴片构成的。通过使用微带线或同轴探针给贴片馈电,在贴片与接地板之间激发电磁场,并且通过贴片上的缝隙向外辐射信号。
  • HFSS中线与仿真
    优质
    本研究探讨了在HFSS软件环境下设计和仿真一种适用于宽带应用的双层微带天线的方法和技术。通过优化结构参数以实现高效宽频性能,为无线通信领域提供了一种新型解决方案。 天线作为通讯试验箱前段的重要组成部分,承担着发射信号和接收回波信号的任务。微带天线因其结构简单、低剖面、小型化等特点而被广泛应用,尤其适用于与飞行器表面共形安装而不影响其空气动力性能或占用内部空间,并且可以与微带电路集成在一起,制造工艺简便且成本低廉。然而,微带单贴片天线的一个显著缺陷是带宽较窄,通常只有百分之几的范围,相比之下阵子天线、缝隙天线和波导开口喇叭天线的工作带宽一般在15%到50%之间。因此,当前关于微带天线的研究主要集中在提高其频带展宽技术上。
  • 线在通信与网络中的
    优质
    本研究探讨了双层宽带微带天线的设计方法及其在现代通信和网络系统中的应用潜力,旨在提升无线通信设备的性能。 摘要:微带天线的窄频带特性是限制其广泛应用的重要原因之一,因此如何扩展微带天线的带宽一直是研究的重点。通过采用双层多贴片结构,并在两贴片之间加入空气层的方法来增加微带天线的工作频率范围。此外,利用正交馈电技术(即使用微带线进行馈电),使该设计不仅具有宽带特性,还能够实现圆极化功能。由于贴片间的谐振耦合作用,此设计方案将频带展宽至11.04% (VSWR≤2),并且增益达到了5.2 dB,在L波段的频率范围为1.206~ 1.346 GHz内工作。 引言:微带天线是在带有导体接地板的介质基片上附加导体贴片构成的一种天线,通过使用微带线或同轴探针向贴片馈电,在贴片和接地平面之间激发电磁场。
  • 有槽的频段超线
    优质
    本作品设计了一种创新性的带有槽口结构的双频段超宽带微带天线,能够在两个不同频率范围内高效工作。 双频段带槽超宽带微带天线是为覆盖超宽带(UWB)通信系统而设计的新型天线。近年来,UWB技术迅速发展,并通过极宽的工作频率范围支持WiMAX和WLAN等无线网络系统的运行。然而,传统的超宽带天线工作在3.1GHz到10.6GHz频段内时可能会受到WiMAX或WLAN干扰,因此需要设计具备双频段阻带特性的新型天线。 研究团队提出了一种创新的微带天线设计方案,在半圆形辐射贴片上蚀刻互补分裂环形结构(split ring resonator),使该天线在3.3GHz到3.7GHz和5.15GHz到5.85GHz两个频段内具备良好的阻带特性。这两个频率范围正好覆盖了WiMAX与WLAN的工作区间,使得干扰得到有效抑制。此外,这种新型天线工作于2.8GHz至12GHz的宽广频带上,在该范围内增益从2.3dB到6.3dB变化,并且在水平面(H平面)上显示全向辐射特性。 为提升超宽带微带天线性能和适应多样化的应用环境,研究人员探索了多种实现双频段阻带特性的技术方案。例如,通过添加L型或E型槽于辐射贴片与接地平面上来引入特定频率范围内的衰减;在正方形辐射贴片上设计修正的T形槽,并结合两个E形和W形导体背板结构以实现双频段阻带特性;以及利用馈电线上的准互补分裂环蚀刻技术,成功开发出平面单极子天线。此外,还通过使用三叉形状馈电线路与嵌套C型短路销设计了具有圆形槽的超宽带微带天线。 在以上研究中,采用阿基米德螺旋形渐变槽结构以实现所需双频段阻带特性也得到了应用验证。这些技术方案旨在确保对WLAN和WiMAX频率范围内的有效抑制作用。 本研究所提出的天线设计通过引入分裂环的互补结构于半圆形辐射贴片内,在两个指定的阻带区间实现了优良的衰减效果,从而显著减少了系统间的干扰问题。该设计方案基于微带技术实现,并因其紧凑、低成本及易于与微波集成电路集成等优势在现代通信领域广泛应用。为了确保天线性能满足设计要求,必须仔细考虑其尺寸大小、形状以及制造工艺等因素。 超宽带天线的发展为高速数据传输提供了更宽的频谱资源,而具备双频段阻带特性的新型天线则能够有效避免与现有无线通信系统频率重叠问题,从而提高整体通信质量。哈尔滨工业大学电子与信息工程学院的研究人员Ying Sio、Wei Li和Hongyong Wang的工作表明通过精确控制天线结构参数可以灵活设计满足特定需求的超宽带微带天线。
  • 如何线及扩展线
    优质
    本文探讨了天线带宽的基本计算方法,并介绍了几种有效的技术手段来扩展微带天线的带宽,旨在为无线通信系统的设计提供理论支持和实践指导。 本段落介绍了天线带宽的定义,并推导了天线阻抗相对带宽的一般式,特别强调了微带天线的带宽特性。
  • 小型多频线
    优质
    本项目致力于开发一款适用于多种通信系统的宽带多频微带天线。通过优化结构和材料选择,旨在实现高效、紧凑的设计方案以适应小型电子设备的需求。 本段落基于对微带天线多频带技术、小型化技术和宽频带技术的深入探讨与分析,在某一引信项目的工程要求下,利用Zeland公司的E3D电磁仿真软件进行设计工作。从最基本的圆形微带贴片天线开始,经过C形开槽圆形双频微带贴片天线的设计过程,最终开发出符合项目需求的加载电阻C形开槽圆环形双频微带贴片天线。 在此基础上,根据双频天线设计理念,进一步设计了加载电阻双C形开槽圆环形三频天线。该双频天线能够在中心频率分别为1.49GHz和1.92GHz的两个频段上同时工作;而三频天线则能在三个不同中心频率(分别是1.40GHz、1.83GHz以及1.98GHz)的频带中运行,每个频带的相对带宽在2.2%至5%之间。这一设计非常适合于多频和跳频工作模式的应用场景。 此外,所开发的天线能够同时支持多个或单一特定频率的工作需求,这有助于增强系统的抗干扰性能。
  • 一款新型圆极化线
    优质
    本项目专注于设计并优化了一款新型宽带圆极化微带天线,旨在提高无线通信系统的性能和效率。该天线具备宽频带、高效辐射等特点,适用于多种移动通讯设备及卫星导航系统。 微带天线的基片厚度通常远小于工作波长,因此实现了小型化设计。相比普通微波天线,微带天线具有剖面薄、体积小、重量轻以及易于共形的特点,并且容易获得圆极化特性。然而,其频带较窄并且性能会受到基板材料的影响。 为了拓宽微带天线的频率范围,目前有以下几种方法: 1. 降低等效谐振电路的Q值,例如通过增加基片厚度或减小相对介电常数; 2. 修改等效电路设计:添加寄生贴片、采用电磁耦合馈电等方式; 3. 添加阻抗匹配网络以优化性能; 4. 其他方法包括改变贴片形状、加入变容管以及利用行波阵列或者对数周期结构。 其中,第一种方式相对简单易行。然而,在参数超出一定范围时会激发高阶模式,导致天线方向图劣化并增加辐射损耗。
  • 提高贴片线的方法-如何增加线
    优质
    本文探讨了提升微带贴片天线带宽的有效策略,并深入分析了增加天线带宽的具体方法和技术。 不同的天线提高带宽的具体方法可能有所不同。这里以微带贴片天线为例来讲解如何提升其带宽。 微带贴片天线的基本结构包括介质基板、金属贴片以及接地平面等部分,通过优化这些组成部分的设计可以有效增加天线的带宽。具体的方法有很多,例如采用缝隙耦合馈电方式、引入寄生单元或者使用非均匀厚度的介质材料等技术手段来改善天线性能。 需要注意的是,在实际应用中还需要考虑其他因素如增益和效率之间的权衡问题,因此在选择合适的宽带化方案时需要综合考量。